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RESUMO 
A new filter method is presented and tested for the estimation of the aerodynamic coefficients of aircraft. The 
proposed method uses a stochastic approach to obtain the parameters estimates from the state variables filtering 
errors. This supports an approach where the state variable filtering problem and the parameter estimation 
problem are treated separately resulting into two filtering problems of smaller dimensions and less 
computational burden. Test results indicate that the method is capable of providing good aerodynamic 
coefficients estimations. 
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1. INTRODUÇÃO 

 

The number of multiplications necessary to compute the error covariance matrix used in Kalman based 

filters generally varies with the third power of the state vector dimension (Gelb, 1976). In problems involving 

the estimation of system parameters it is usual to generate extended state vectors of large dimension, due to the 

fact that the dynamic of these parameters must be incorporated into de state variable dynamics (e.g., Curvo, 

2000). Much effort has been undertaken in attempts to develop techniques to minimize the computational 

burden imposed by the problem of parameter estimation and most of these techniques are aimed at reducing the 

filter size. Often, after the elimination of some of the variables the system reaches an irreducible minimum and 

the filter still makes excessive demands on the computer. An alternative technique is to break the high-order 

filter into mutually exclusive lower-order filters, each with separated covariance calculations. Considering the 

numerical complexity condition stated above, the advantage of breaking a filter into filters of smaller 

dimensions becomes evident. 

The method presented, adopts a decoupling scheme where the parameter estimation is treated separately 

from the state estimation, resulting in reduced numerical complexity. The method is intended to be applicable in 

on board real time or near real time identification of time invariant nonlinear dynamic systems, with process and 

mailto:mcurvo@directnet.com.br
mailto:mcurvo@directnet.com.br


 2  

measurement noise, and still have the inherent stabilizing properties of usual filter error methods (Jategaonkar 

and Thielecke, 1994). 

Though significant advances have been made in the estimation of aircraft dynamical model parameters 

(Greenberg, 1951; Klein, 1981; Maine and Iliff, 1985; Klein, 1989; Jategaonkar and Plaestschke, 1989; 

Jategaonkar and Thielecke, 1994, 2000; Bauer, 1990; Curvo 2000, 2002), there is much to be explored in the 

development of on board real or near real time estimation of aerodynamic parameters, increasing safety and 

reducing the overall development costs of flight testing necessary for aircraft specification and certification. 

There is also the opportunity of further exploring the advancements in modern control theory to implement 

adaptive flight controllers to get improved performance. The method presented has the required characteristics 

to attend the demands of these opportunities, combining the realism of nonlinear work models, with 

measurement and process noise at the cost of a low numerical complexity that allows real time implementation. 

The paper is organized as follows: section 2 presents the model formulation for system identification, 

section 3 presents the proposed method; in section 4, an example of identification of the longitudinal dynamic 

model of a generic aircraft is demonstrated and preliminary results presented, and finally in Section 5 

conclusions are drawn concerning method characteristics and test results. 

2. MODEL FORMULATION 
 

The dynamic system, whose parameters are to be estimated, is modeled by the following non-linear 

stochastic equations: 

 
nttttt += xpu,xfx )(),),()(()(               (1) 

 

p

kkkk tttt += yxhy )()),(()( x              (2) 

 

The functions )(f  and )(h  are non-linear real valued vector functions. These functions are assumed to have 

sufficient differentiability in order to allow a Taylor series expansions. The process and measurement noise 

)t(ω  e )t( kx  are assumed to be zero mean Gaussian white noise processes, that is: )Q,0(N)t(ω x=  and 

)R,0(N)t( xkx = . The matrices xQ  and xR  are the noise spectral density and covariance matrices. 

Furthermore, process and measurement noises are assumed to be independent. The parameter vector, p, is to be 

estimated from measurements of system response )(y  to given inputs )(u  based on the system model 

postulated in Eqs. (1) and (2). 
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3. IDENTIFICATION METHOD. 
 

In the method presented herein the unknown parameters are estimated from predicted output, in a scheme 

(Fig. 1) where previously filtered values of the state vector are used. The required predicted response is 

calculated using the filtered state variables and a numerical integration algorithm. Here a first order Euler 

integrator was adopted. 

 

( ) ( ) ttttttt ++ ,),(),(ˆ)(ˆˆ puxfxx               (3) 

 

 

Fig. 1 – Scheme for Parameter Identification. 

 

Assuming small errors in state vector estimation, a first order expansion of the output equation, Eq. (2), 

around the propagated value of previously filtered estate vector can be taken to model the system predicted 

response: 
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and by definition: 
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( )  ( )ttttx ++ Pe ˆˆCov  

 

The following expression for calculating predicted output error then results from the expansion of 

( )( )tttt ++ ,x̂h , Eq. (4), into a Taylor series around the previously known parameter vector, p . 
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Rearranging the terms, and adopting a compact notation, Eq. (6) may be put into the following form: 
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The problem can now be taken as one of estimating p from the observation predicted output error (Eq. 

(7)), given the a priori information: 

 

0=+ pep ,  
pp Pe cov                (8) 

 

where P p is the covariance matrix of the a priori errors in the parameters and the matrix )( ttp +R , is defined 

as: 
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  )()(cov tttt pp ++ R  

 

and calculated from Eq. (5) such that 
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where: 
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The solution of the problem, that is, the estimated value of p  is then found through a stochastic optimal 

linear estimator with a priori information applied to the problem described by Eqs. (8) and (7) (e.g., Gelb, 

1976).  
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Since 0=+ pepp , then: 
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Notice that the estimated value, p̂ , can also be seen as the p  that minimizes the following quadratic form: 
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To reiterate in ttt +=  it is sufficient to define, observing that ppp −= ˆˆ  or ppp ˆˆ += : 
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p   p̂  

P p  )(tpP  

 
 

4.  EXAMPLE 
 

The example problem adopted for demonstration of the proposed technique consists of a simplified 

longitudinal dynamic model of a generic aircraft. The model is described by a set of non-linear ordinary 

differential equations (Etkin, 1972; Nelson, 1990; Durham, 1998) and with the same geometric, mass and 

aerodynamic data as in Nelson (1990) and Curvo (2000). The aerodynamic model is a classical nonlinear 

longitudinal model most commonly used in simulations, performance, and stability and control studies (Etkin, 

1972; Nelson, 1990; Durham, 1998). Some simplifying assumptions were considered, namely: compressibility 

effects, and density variations due to velocity and altitude changes are not taken into account. Simulated data is 

used to estimate the following aerodynamic derivatives:  

 

0CL  , 
CL , 

CL , 
e

CL
, 

0Cm , 
Cm , 

Cm , 
qCm  and 

e
Cm

. 

 

 The use of simulated data does not invalidate the results. The objective is to test and demonstrate the 

procedure. Here, contrary to common practice, the unsteady aerodynamics effects, which depend on  , are not 

combined with the aerodynamic effects due to q. This is generally done in order to alleviate identification 

difficulties cause by the fact that   and q are nearly the same for most maneuvers. 

 The state vector, is defined by the following set of variables: 
 

 hqVT =x               (14) 

 

Plant dynamic disturbances ( ) and measurement noise were included in the simulations. The plant disturbance 

is modeled using the Von Karman model for atmospheric turbulence (Nelson, 1990). Simulated measurement 
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noise ( xv ) is considered to be white and gaussian with zero mean and variance Rx. Results for simulated 

measurements, estimated values, and true values of the aircraft response are shown in Figures (3) through (4) 

and the control input in Figure (5). The simulations using the estimated coefficients (estimated values) are in 

good agreement with the simulations using the true values. 

 

 

 

Fig.2 – Parameters of the Longitudinal Dynamics. 

 

 

0.00 10.00 20.00 30.00 40.00

t (s)

-10.00

-5.00

0.00

5.00

10.00

  
  
(d

e
g

re
e

)


Simulated Measurement

Estimated Values

True Values

    
0.00 10.00 20.00 30.00 40.00

t (s)

252.00

256.00

260.00

264.00

268.00

272.00

V
  

(m
/s

)

Simulated Measurements

Estimated Values

True Values

 

(a) Airspeed.      (b) Angle of Attack. 

Fig. 3 – Time History of State Variables. 
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(a) Pitch Rate.       (b) Angle of Attitude. 

Fig. 4 – Time History of State Variables. 
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Fig. 5 – Applied Control Sequence (elevator deflection). 

 

Figures (6) through (11) show the time histories for de estimated aerodynamic derivatives. In all cases, the 

derivative values settle almost immediately after the maneuver. These results are encouraging. If the time 

histories of these parameters kept varying even after the maneuver, through the end of the estimation time 

history, then little confidence could be held in the estimation of these coefficients. 
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(a) Independent Term.     (b) Derivative due to Angle of Attack. 

Fig. 6 – Time History of Lift Coefficient. 
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(a)Derivative due to Angle of Attack Rate. (b)Derivative due to Elevator Deflection. 

Fig. 7 – Time History of the Lift Coefficient 
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(a) Independent Term.     (b) Derivative due to Angle of Attack. 

Fig. 8 – Time History of Pitching Moment Coefficient. 
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(a) Derivative due to Angle of Attack Rate.  (b) Derivative due to Pitch Rate. 

Fig. 9 – Time History of Pitching Moment Coefficient. 

 

For the purpose of comparison, the estimated aerodynamic coefficients are summarized in Table 1. At 

the same table, the true values used for simulations as well as the initial values for the estimation problem are 

presented. In the example problem, the coefficients used to initialize the estimation processes are equal to the 

values used for simulation purposes, called true values, corrupted by approximately 15%, called initial values. 
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Fig. 10 – Time History of Pitching Movement Derivative due to Elevator Deflection. 

 

 

Table 1 – Parameter Estimates for Simulated Data. 

 True 

Values 

Initial Values 

(Simulation) 

Estimated Values 

(Estimation) 

CL0 0.30000 0.34500 0.29741    0.00065 

CL 3.45000 3.98600 3.54006    0.02088 

CL  1.20000 0.95200 0.85384    0.23322 

CLe 0.40000 0.48600 0.39602    0.03628 

Cm0 0.00000 0.00000 0.00038    0.00078 

Cm -0.41000 -0.34900 -0.41918    0.02363 

Cm  -1.65000 -1.89800 -1.90584    0.48069 

Cmq -4.30000 -3.65500 -3.71197    0.77615 

Cme -0.60000 -0.69000 -0.60317   0.04429 

 

One of the most important aspects of estimation is the modeling of noise (disturbances) inherent to the 

processes. The statistical data used for estimation are shown in Tables 2 and 3. These tables contain data related 

to the initial state and parameter variance (Po), plant disturbance (Qx), and measurement errors (Rx). The initial 

values for the variance of the parameters to be estimated followed a criterion suggested by Bauer and 

Andrisani (1990), where ( ) ],...,2,1,25.0[
2

pjo njpdiagP = . For parameter values equal to or close to zero, the 

initial variance is established based on engineering judgment. The initial values for the state variables variance 
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were assumed to be the same as the measurement noise variance. The specification of variance for state vector 

(V, , q, , h) and measurement noise is the most troublesome characteristic in estimation problems. Here both 

are assumed to be white with intensities given by Qx and Rx, respectively. Process noise (Qx) the most difficult 

to determine. For this application, Qx was chosen to be small enough, based on previous experience, and then 

adjusted using the residuals as guideline (filter tuning) in order to obtain the best filter performance. Rx is 

obtained directly from the measured data. 

 

 

               Table 2 – Initial Process Variance, Noise Variance.          Table 3 – Measurement Variance. 

State/Parameter P0 Qx  Measurement Rx 

Vm 1.0000E0 0.5786D-2  Vm 1.000E0 

m 1.0000E0 0.8416D-2  m 1.000E0 

qm 1.0000E0 0.2692D-2  Qm 1.000E0 

z 1.0000E0 0.2990D-3  z 1.000E0 

h 4.0000E0 0.4039D+3  H 4.000E0 

CL0 5.077E-3     

CL 9.930E-1     

CL 5.664E-2     

CLe 1.323E-2     

Cm0 1.000E-4     

Cm 7.613E-3     

Cm 2.525E-1     

Cmq 8.349E-1     

Cme 2.976E-2     

 

 

5. CONCLUSIONS 
 

A new stochastic output error method, for parameter identification, was presented and demonstrated using 

the aerodynamic longitudinal model of a generic aircraft. The results obtained are encouraging. The method is 

simple enough to provide computing algorithms that can be packed as a subroutine and included in flight 

computers, so that the estimation can be conducted in near real time during flight tests. Since the method is of 
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the filter error type it can naturally deal with unavoidable modeling errors, which can be taken into account by 

dynamic compensation with colored process noise, at the cost of few extra parameters to be estimated. 

The estimated values were coherent with the real values. The estimates behavior, however, are mixed in 

character. Some parameters are easier to estimate than others; this behavior seems to be directly linked to the 

quality of the observation data. As in most cases the dynamic coefficients, 
Cm and 

qCm  are the most 

troublesome to be estimated, especially when they are not combined into a single coefficient. 
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