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Abstract A new form of solution is developed for the problem of the stochastic optimal regulator of discrete dynamic linear 
systems. Initially, using the optimality principle of Dynamic Programming it is shown that the solution to this problem can alter-

natively be obtained employing optimal linear estimation in each stage or step of discretization. Next, a new controller is ob-

tained, as the result of hypothetically assuming the dynamic system reversible and analogous to a virtual multistage process with 

inverted flux and of treating the solution in an alternative and equivalent form employing optimal linear estimation. This new 

controller is a direct discrete sequential one; that is, a controller whose gain only depends on past and present information about 

the system. To illustrate the method behavior and to allow comparison with a previously developed similar heuristic approach, 

preliminary tests are done using the same test problem of satellite attitude control. The proposed solution is expected to lead to a 

more adequate controller to be used in adaptive control schemes. 

Keywords Stochastic Optimal Control; Optimal Regulator; Dynamical Systems Control; Dynamic Programming 

Resumo Uma nova forma de solução é desenvolvida para o problema do regulador ótimo estocástico de sistemas dinâmicos 
lineares discretos. Inicialmente, a partir de abordagem pelo princípio da otimalidade de Programação Dinâmica, mostra-se que a 

solução do problema pode ser obtida de forma alternativa equivalente, pela utilização de estimação linear ótima, em cada estágio 

ou ponto de discretização. Em seguida, obtém-se um novo controlador como resultado de hipoteticamente se admitir o sistema 

dinâmico reversível e análogo a um processo de múltiplos estágios, que virtualmente evolui no sentido dos tempos decrescentes, 

e de se tratar a solução de forma alternativa equivalente pela utilização de estimação linear ótima. Este novo controlador é se-

quencial direto, isto é, um controlador cujo ganho só depende de informações passadas e presentes do sistema. Para ilustrar o 

comportamento do método e para permitir comparação com uma abordagem heurística semelhante, previamente desenvolvida, 

testes preliminares são feitos utilizando um mesmo problema teste de controle de atitude de satélite. Espera-se que a solução pro-

posta leve a procedimento mais adequado para o emprego em esquemas adaptativos de controle. 

Palavras-chave Controle Ótimo Estocástico; Regulador Ótimo; Controle de Sistemas Dinâmicos; Programação Dinâmica.

1    Introduction  

In the search for an optimized solution of a lin-

ear system control problem it is usual the adoption of 

a quadratic index of performance. The gains of the 

resulting controller for the usual optimal control 

approach rely on future system dynamics knowledge. 

If Dynamic Programming (e.g., Bryson and Ho, 

1975) principle of optimality and parameter optimal 

linear estimation (e.g., Jazwinski, 1970) are applied it 

can be shown that the optimal control can be equiva-

lently determined in each stage. Though with this 

approach a stochastic meaning of the inverse of co-

variance matrices is given to the weight matrices, the 

characteristic of relying on future system dynamic 

knowledge still remains. This is a serious limitation 

in the most common situations where the linear dy-

namics is only a local approximation of the dynam-

ical behavior of the system and where adaptive 

schemes are necessary. 

In this work a new sequential controller appli-

cable to discrete linear systems is proposed which 

has the distinctive characteristic of having the gener-

ation of gains only dependent on past and present 

system information. Based on the fact that the transi-

tion matrix does always have an inverse, the discrete 

linear system is viewed as a process of multiple stag-

es in the reversed sense. If the Dynamic Program-

ming principle of optimality is applied, it is again 

possible to formally treat the control action determi-

nation in a typical stage as a problem of parameter 

optimal linear estimation. However, this can now can 

be done in the sense of progressing time, i.e., such as 

to have a direct sequential controller. 

The new and original version presented is in-

spired and related to a previous work (Rios Neto and 

Cruz, 1990) in which a regulator type of controller 

also capable of operating in the direct and sequential 

form was heuristically proposed. This present version 

reconsiders, reviews and updates a previous prelimi-

nary version (Rios Neto, 1990) in a renewed effort of 

establishing theoretical basis for other previous heu-

ristic approaches adopted to synthesize adaptive 

controllers applied to ship control (Rios Neto and 

Cruz, 1985) and satellite control (Ferreira et al, 

1985). If it is considered the interpretation of model-

ing control actions magnitude and deviations in state 

or output as dispersions using variances, then the 

new controller proposed is related to minimum vari-

ance controllers (e.g.: Li and Evans, 1997, 2002; 

Kharrat et al, 2010) and to predictive control 

schemes where Kalman filtering is used to estimate 

the control actions (e.g.: Silva and Rios Neto, 2000; 

Silva, 2000; Silva and Rios Neto, 2011). 

http://cba2012.dee.ufcg.edu.br/
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In what follows, section 2 presents the formula-

tion and usual form of solution of the problem as 

presented in Bryson and Ho (1975). In section 3, the 

proposed approach is developed, keeping the use of 

Bryson and Ho (1975) notation. In order to allow 

comparison of performance with a similar approach, 

section 4 presents results of preliminary tests using 

the same problem of satellite attitude control as in 

Rios Neto and Cruz (1990). Finally, in section 5 a 

few conclusions are drawn. 

2   Usual Formulation and Solution 

Given the discrete dynamical system and the 

correspondent observations for i=1,2,…,n-1: 

 
 (   )   (     ) ( )   ( ) ( )   ( ) 
   ( ( )  ( )  ( ))                                                     (1) 

 

 ( )   ( ) ( )   ( )                                              (2) 

 

where v(i), w(i), x(0) are zero mean Gaussian, such 

that for j=1,2,…,n-1: 

 
 [ ( )  ( )]     [ ( )  ( )]        

 [ ( )  ( )]       [ ( )  ( )]   ( )     
 [ ( )  ( )]   ( )  [ ( )  ( )]   ( )      

 

The objective is to control the system to get x(i) as 

close to zero as possible, according to a given strate-

gy, as, for example, that of minimizing the criterion 

of performance: 

 

   [
 

 
  ( ) ( ) ( )  

 

 
∑ (   
     ( ) ( ) ( )  

  ( ) ( ) ( ))]                                                         (3) 

 

where S(n), A(i), B(i) are weight matrices, assumed to 

be positive definite. 

 The solution to this problem obey the prin-

ciple of separation (see, for example, Bryson and Ho, 

1975), and is as follows, supposing that S(n) and  ̅( ) 

are given. 

 

  ( )    ( ) ̂( ),                                                    (4) 
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The solution has the same structural form as 

that of the correspondent deterministic problem 

where there is a perfect knowledge of the state. The 

difference is that the control action is calculated 

using the value of the best estimate of the state, as 

given by the Kalman filter. The difficulties with this 

solution are those related to: (i) the choice of the 

weight matrices S(n), A(i), B(i), (ii) the fact that the 

gains  ( ) depend on information which have to be 

generated from final to present time, complicating its 

application to the control of time variant systems 

with modeling errors. 

3   Alternative Equivalent Form of Solution  

The optimal control problem of Equations (1) 

and (3) of previous section can be viewed and treated 

considering a correspondent process of multiple 

stages as in Figure 1, where each stage corresponds 

to a step of discretization (Eq. (1)). 

 

 

Figure 1: Dynamical System as a Process of Multiple Stages  

The optimal control problem can then be solved 

considering the principle of certainty-equivalence, 

using the optimality principle of Dynamic Program-

ming. With this approach, the optimal control can be 

determined starting in the last stage and progressing 

back to the first stage. 

 
  (    )      (   )  [   ( 

 ( ) ( ) ( )  

  (   ) (   ) (   )  
   (   ) (   ) (   ))     ],                    (12) 

 

where,   ( )                     is the set of 

known measurements. Considering, 

 

 ̂( )   ( )   ( ),                                    (13) 

 

where  ( ) is orthogonal to the estimate  ̂( ) and not 

dependent on  ( ). Taking this in account and con-

sidering the dynamical constraint of Equation (1), 

together with the fact that  ( ) is a white noise, it 

results, unless of constants regarding the minimiza-

tion with respect to  (   ), that, equivalently: 

 
  (    )      (   )[   ( (     ) ̂(   )  

 (   ) (   ))  ( )( (     ) ̂(   )  

 (   ) (   ))    

  (   ) (   ) (   ))].                                 (14) 

 

In the last stage, the solution of this minimization 

problem can then be shown to be formally equivalent 

to the optimal minimum variance solution of the 
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parameter estimation problem that follows (see e.g. 

Bryson and Ho, 1975). 

 

   (   )    (   )                                        (15) 

   ̅( )    ( )                                                    (16) 

 

  (   )  (   
  (   ))   ( )  (   

  ( )), and 

 ̅( ) is the estimated controlled state at last stage, 

given by: 

 

 ̅( )    (     ) ̂(   )   (   ) (   )    (17) 

 

In fact, taking this value back in Equation (16), the 

minimum variance estimate (see e.g., Jazwinski, 

1970) of  (   ) results as: 

 

 ̂(   )   (  (   ) ( ) (   )   (   ))
  

 

  (   ) ( ) (     ) ̂(   )                             (18) 

 

Formally comparing this expression with that of 

Equations (3) and (7), it is seen that: 

 

 (   )    (   ) ̂(   )    (   )            (19) 

 

Now using again the principle of optimality from the 

stage previous to the last one, there results that: 

 
  (    )     

 (   )
 [(  (    )     (  

 (   ) 

 (   ) (   )   

  (   ) (   ) (   ))     ],                       (20) 

 

But, the optimal   (    ) is given by, unless of a 

constant, 

 

  (    )  [
 

 
(( (     ) ̂(   ) 

  (   ) (   )    (   ))   ( ) 
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 ( (   ) ̂(   ))
 
 (   )( (   ) ̂(   )) 

  ̂(   )  (   ) ̂(   ))]                               (21) 

 

If is taken in account that:  ̂(   )   ̅(    )  

 ̅(   )  and that  ̅(   ) depends on the observa-

tion  (   ), it finally results that: 

 
  (    )     

 (   )
 [   (( (     ) ̅(   ) 

  (   ) (   )  ̅ (   ))  ( ) 
( (     ) ̅(   )   (   ) (   ) ̅(  )) 

 ( (   ) ̅(   ))
 
 (   ) 

( (   ) ̅(   ))   ̅(   )  (   ) ̅(   ) 
   (   ) (   ) (   ))]                             (22) 

 

This minimization problem can then be shown to be 

formally equivalent to the optimal minimum variance 

solution of the parameter estimation problem that 

follows: 

 

   ̅(   )    
 (   ),  

  
 (   )  (     (   )),                                (23a) 

 

    (   ) ̅(   )    (   ),  

  (   )  (   
  (   )),                                (23b) 

 
   (     ) ̅(   )   

 (   ) (   ) ̅(   )    ( ), 

   ( )  (   
  ( )),                                            (23c) 

 

   (   )    (   ), 

   (   )  (   
  (   )).                               (23d) 

 

However, since the errors are independent random 

variables, the first three equations can be processed 

in batch, generating an a priori information to then 

process the last equation. But this equivalently means 

that for the stage previous to the last one, the follow-

ing a priori condition has to be considered for 

 ̅(   )  the controlled state: 

 

   ̅(   )    
 (   )                                        (24) 

 

In the a priori distribution as given by condition in 

Equation (24), the optimal trajectory has to satisfy 

the condition of optimal solution according to the 

principle of optimality, which requires that from an 

outcome of the random process  ̅(   ): 

 
 ̅(   )   (     ) ̅(   )   (   ) ̅(   )  
 ̅(   )    (   ) ̅(   )                                   (25) 

 

And, at the same time, this outcome has to be com-

patible with the distributions of Equations (15) and 

(16), that is: 

 

    (   ) ̅(   )    (   )                       (26) 

 
   (     ) ̅(   )   

 (   ) (   ) ̅(   )    ( )                          (27) 

 

The outcome compatible with the distributions of 

Equations (24), (26) and (27), and which is optimal, 

is equivalently given by the minimum variance esti-

mate (Gauss-Markov), which can be expressed as: 

 

 ̅̂(   )   ̅(   )    (   )                             (28) 

 

 ̅̂(   )                                                              (29) 

 

where  ̅̂(   )  is the expected value conditioned to 

the conditions of Equations (24), (26) and (27), and 

with an estimated zero mean error    with distribu-

tion: 

 
 [  (   )  (   )

 ]  ( (   )    (   ) 
 (   ) (   )  (  (     )    (   ) 
  (   )) ( )(  (     )   (   ) (   )))   
 
 ( (   )    (     ) ( ) (     )    (   ) 

( (   )    (   ) ( ) (   )) (   ))
  

           (30) 

 

Comparing with Equation (9), it is seen that: 

 

 [  (   )  (   )
 ]     (   )                     (31) 

 

With this result, the cycle of analysis for the 

stage previous to the last one is done and the problem 
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of determination of the optimal control in this stage 

is formally equivalent to solving the optimal parame-

ter estimation problem: 

 

   (   )    (   )                                        (32) 

 
   ̅(   )    (   )    
 ̅(   )   (       ) ̂(   ) 
  (   ) (   ).                                                (33) 

 

The solution of this problem gives the minimum 

variance estimate: 

 

 (   )    (   ) ̂(   )    (   )           (34) 

 

where  (   ) is as in Equation (7), taking i=n-2. 

The validity for the remaining stages can be 

demonstrated in a completely analogous way as that 

done for the stage previous to the last stage. 

4   Reverse Virtual Process of Multiple Stages and 

Dynamic Programming Approach 

Consider now the system of multiple stages of 

Figure 2, where it is assumed the hypothetical and 

virtual situation, in which the evolution of the states 

 ( ) is considered in a reverse sense, from final to 

initial state. Though a hypothetical and virtual situa-

tion, this is numerically possible in the case of dis-

cretized linear dynamic systems, due to the fact that 

the transition matrix does always have an inverse. 

 

 
 

Figure 2: Process of Multiple Stages with Reverse Flux 

 

Under this assumption, the following opti-

mization problem is posed: 

 

Minimize:    [
 

 
(  ( )   ( ))  ( )(  ( )   ( )) 

 
 

 
∑ ( 
   (  ( )   ( ))  ( )(  ( )   ( ))  

  (   ) (   ) (   ))]                                    (35) 

 

Subject to:  (   )     (     ) ( )   

   (     )( (   ) (   )   (   )) 

   (   )( ( )  (   )  (   ))                           (36) 

 

where, i=n,n-1,…,1, S(0), A(i), B(i) are weight matrices, 

assumed to be positive definite, and    ( ) is the 

desired trajectory to be followed. 

As previously done, a Dynamic Programming 

approach is taken in a total similar way as before, but 

applied to a virtual reality. The optimal control can 

be determined starting in the first stage and virtually 

progressing back to the last stage. 

 
  (  

 )     
 ( )

 [   ( (  ( )   ( ))  ( )(  ( ) 

  ( ))  (  ( )   ( ))  ( )(  ( )   ( ))  
  ( ) ( ) ( ))   

 ],                                             (37) 

 

Where, now    ( )              
  is the set of 

known virtual measurements. Considering  

 

 ̂ ( )   ( )    ( ),           ,                         (38) 

 

where   ( ) is orthogonal to the optimal virtual esti-

mate  ̂ ( )   [   ( )   
 ]   and not dependent on 

 (   ). Taking this in account, considering the 

dynamical constraint of Equation (36), together with 

the fact that  (   ) is a white noise, regarding that 

the minimization in Equation (37) is with respect to 

 ( ) and that the conditioned expectation is with 

respect to   
  , it results that, unless of constants, 

equivalently: 

 
  (  

 )      ( )[   ( ( 
 ( )     (   )( ̂ ( )  

 ( ) ( )))  ( )(  ( )  
    (   )( ̂ ( )   ( ) ( )))    ( ) ( ) ( ))] (39) 
 

Thus, in the last stage the solution of the associated 

problem of control is formally equivalent to the op-

timal minimum variance solution of the parameter 

estimation problem that follows. 

 

   ( )    ( )                                                     (40) 

 

    ( )   ̅ ( )    ( )                                      (41) 

 

where   ( )  (   
  ( ))   ( )  (   

  ( )), and 

 ̅ ( ) is the controlled however virtual state at last 

stage, given by: 

 

 ̅ ( )      (   )( ̂ ( )   ( ) ( ))                    (42) 

 

The solution to this problem is given by the mini-

mum variance Gauss-Markov estimator: 

 

 ̂( )  (  ( ) ̅( ) ( )   ( ))
  
  ( ) ̅( ) 

( ̂ ( )   (   )  ( )) 

   ( )( ̂ ( )   (   )  ( ))                              (43) 

 

where  ̅  ( ) is the covariance matrix of  (   )  ( ).  

Notice that   ( )   ( ), and that  ̂( )   ̂ ( ) 

is a virtual control. At this point it is already neces-

sary to point out that in order to give practical use to 

this result and come back to the real world of pro-

gressing time, one has to heuristically specify  ̂ ( ) 

such as to get regulation and notice that   ( ) can 

only be chosen to be  ̂( ), in a certainty equivalent 

way. It all happens as if one had a predictive control 

with one step ahead. 

Now using again the principle of optimality 

from the stage previous to the last one, there results: 

 

  (  
 )      ( ) [(  (  

 )     ( (  ( )  

 ( ))  ( )(  ( )   ( ))    ( ) ( ) ( ))   
 ],(44) 
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But, the optimal   (  
 ) is given by, unless of a con-

stant, 

 
  (  

 )  [   ((  ( )     (   )( ̂ ( )   ( ) ̂( )))  

 ( )(  ( )     (   )( ̂ ( )   ( ) ̂( ))) 
 (  ( )   ̂ ( ))  ( )(  ( )   

 ̂ ( ))   ̂ ( ) ( ) ̂( ))]  

 

If it is considered that:  ̂ ( )   ̅ ( )   ̅ ( )  and 

that  ̅ ( ) depends on the observation   ( ), it re-

sults: 

 
  (  

 )     
 ( )

[   ((  ( )     (   )( ̅ ( )  

 ( ) ̅( )))  ( )(  ( )    

    (   )( ̅ ( )   ( ) ̅( ))) (  ( ) 

 ̅ ( ))  ( )(  ( )  ̅ ( ))   ̅ ( ) ( ) ̅( )  
  ( ) ( ) ( ))].                                                   (45) 

 

Where, the condition of optimal solution, according 

to the principle of optimality, requires that from an 

outcome of  ̅ ( ) the optimal trajectory control has 

to be such as to satisfy: 

 

 ̅( )    ( )( ̅ ( )   (   )  ( ))                      (46) 

 

As done in Section 3.1, this minimization can 

equivalently be viewed and interpreted as an optimal 

minimum variance parameter estimation problem as 

follows. 

For the a priori condition: 

 

    ( )   ̅ ( )    
 ( )                                     (47) 

 

where   
 ( )  (     ( )), at the same time the con-

trolled  ̅ ( ) has to be an outcome compatible with: 
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 ( )  ( )( ̅ ( )   (   )  ( )))    ( )      (48) 

 

Or, in a more compact notation: 
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 ( )                                   (49) 
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  ̅
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The outcomes compatible with the distributions 

of Equations (46) and (49), 

 

 ̅ ̂( )   ̅ ( )    ( ),                                           (50) 

 

are given by the Gauss Markov estimator, which in 

the Kalman form is given by: 

 

 ̅ ̂( )    ( )   ( )(   ( )    ( )  ( ))         (51) 
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    ( ))
  

  

 (    
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 [  ( )  

 ( )]  ̂    ( )  
    ( )-  ( )  ( )   ( )                                   (53) 

 

With this result the cycle of analysis for the 

previous to last stage is complete and the problem of 

determination of the optimal control is formally 

equivalent to the parameter optimal estimation prob-

lem that results combining Equation (50), repeated 

bellow, with the condition in the control dispersion: 

 

 ̅ ̂( )   ̅ ( )    ( ), 

                                                                               (54) 
   ( )    ( )   
 

where   ( )  (   
  ( ))   ( )  (   

  ( )), and 

the dynamical constraint has to be considered: 

 

 ̅ ( )     (   ) ̂ ( )     (   ) ( ) ( )          (55) 

 

The solution to this problem is again that given by 

the minimum variance estimator: 

 

 ̂( )    ( ) (  ̂ ( )    (   ) ̅ ̂( ))                    (56) 

 

  ( )  (  ( ) ̅( ) ( )   ( ))
  
  ( ) ̅( )        (57) 

 

where  ̅  ( ) is the covariance matrix of  (   )  ( ). 

For the other stages the situation is analogous 

and it is only necessary to adequate the indices of 

Equations (49) to (57), resulting for i=1,…,n-1: 

 

 ̅  ( )   (     )   ( )  (     )                     (58) 
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 ( )     ( )   ( ) (  ( )   ( )   ( )      ( ))
  

 

 (    
  ( )   ( )  ( )  ( ))

  
   ( )  ( )     (60) 

 
 [  ( )  

 ( )]  ̂    ( ) 
    ( )-  ( )  ( )   ( )                                   (61) 

 

   ( )  ̂ ((  (   ) (     )  (   ))
 
  

(( (   )  (   )    ) (     ) 
 (   )) )   

   ( )  ̂  (   (   ) (  (   )  (   )    )
 )   

  ̅
  ( )  ̂ (  

 (   )    ̅
 (   ))   

   ̅(   )   (     )  (   )   

  ̅
 ( )  (      ( ))   

 

 ̂( )    ( ) (  ̂ (   )    (     ) ̅ ̂( ))            (62) 

 



65

Anais do XIX Congresso Brasileiro de Automática, CBA 2012.

ISBN: 978-85-8001-069-5

  ( )  (  ( ) ̅( ) ( )   ( ))
  
  ( ) ̅( )            (63) 

 

Where,  ̂( )   ̂ ( ) is a virtual control. Thus, as 

already pointed out before, to give practical use to 

this result and come back to the real world of pro-

gressing time, one has to heuristically specify 

 ̂ (   ) such as to get regulation and   ( ) (Eq. 

(59)) can only be chosen to be  ̂( ), in a certainty 

equivalent way. The use of the controller in order to 

stabilize the system, in the direct sense of real world, 

from    to   , has to necessarily presuppose that a 

strategy is adopted to condition decreasing  ̂ (   ) 

values. Thus, it seems reasonable that (Eq. (59)): 

 

  ( )   ̂( )                                                            (64) 

 

And since there can be a choice for conditioning 

what is going to happen in the future, it also seems 

reasonable that (Eq. (62)): 

 

 ̂ (   )     ( )                                           (65) 

 

 The choice for   ( ) as being equal to  ̂( ) 
implies that the dispersion of the error   

 ( ) has to 

be compatible with the order of magnitude of the 

error in the implementation of the control  ̂( ). The 

inferior limit of this error   
 ( ) dispersion, in the 

ideal situation of not having software and hardware 

imprecisions in the implementation of the control, 

would be of the order of the dispersion of the state 

estimation error. However, in practical situations the 

dispersion provoked by the controller is usually one 

order of magnitude bigger than that of the state esti-

mator. Thus, in practical situations where state esti-

mation errors are present it is reasonable to assume: 

 

 [(  
 
 
( )) ]      ( )                                             (66) 

 

where    ( ) is the jth term of the diagonal of the 

matrix of covariances of the errors in the state esti-

mation and    , and usually      . 

5.   Preliminary Testing 

For the sake of comparison, the example taken 

for preliminary testing is the same as in Rios Neto 

and Cruz (1990). It is based on a model of double-

gimbaled momentum wheel for the attitude control of 

a geostationary satellite, as given in Kaplan (1976). 

The satellite has the following characteristics: mass 

of 716 kg; moments of inertia Ix=Iz=2000 N.m.s
2
, 

Iy=400 N.m.s
2
; nominal wheel momentum of 200 

N.m.s; and orbital frequency of 7.28E-05 rad/s. It is 

equipped with sensors capable of observing roll and 

pitch with accuracy of 5.8E-05 rad as expressed by 

their standard deviations. The satellites axes x, y, and 

z are respectively in correspondence with roll, pitch 

and yaw; the wheel axis coincides with the y axis. In 

discrete-time form, based on a discretization time 

interval of 0.1 s, the state model is as follows: 
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The initial conditions and controller parameters 

adjustment were as follows: 
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Where, the diagonal terms in    ( ) were chosen 

according to its meaning of the a priori variances in 

the errors modeling the dispersions of controlled 

states relative to the desired solution. In the case of 

the variances modeling the dispersions in angles the 

values were chosen in correspondence to the accura-

cies to be attained; and in the case of angle rates the 

choice was such as to guarantee margins that allow 

variations that may be necessary for convergence in 

position. The matrix    ( ) was chosen according to 

the same meaning, to represent the allowed disper-

sions in control action. 

To guarantee convergent increments in state 

variables compatible with control action limits, the 

following choices were made: 

 

 ̂ 
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                                                                               (69) 
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To avoid near singularity numerical behavior, in 

analogy with what is done in state estimation with 

the addition of process noise, the diagonal terms of 

the matrix  ̅  ( ) (Eq. (54)) were saturated from 

below as follows: 

 

 ̅  ( )   ̅  ( )     ( )                                        (70) 
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(a) 

 
(b) 

 

 
(c) 

 
Figure 3: Three Axis Attitude Control Angles 

 

 

Under ideal simulation conditions of perfect 

knowledge of state and no process perturbations, the 

results obtained with the proposed controller are 

quite satisfactory, as depicted in Figures 3 and 4. The 

controller response could be taken in the limit of the 

control action capacity for the problem at hand, 

reaching a condition of satisfactory errors levels (of 

the order of magnitude of 1.E-05 rad in roll and yaw, 

1.E-06 rad in pitch, and angles rates below 5.E-05 

rad/s). 

 
(a) 

 
(b) 

 

 
(c) 

 
Figure 4: Three Axis Attitude Control Angle Rates 

 

6.   Conclusions 

A new optimal direct sequential regulator for 

discrete linear systems was developed. It is optimal  

in the sense of minimizing a quadratic index of per-

formance in the deviation errors relative to a desired 

dynamic system trajectory. It is direct and sequential 

in the sense that the gains to calculate control actions 

are obtained in each progressing time step. 

Using the Dynamic Programming principle of 

optimality, it was first shown that employing a for-

mally equivalent estimation approach a solution can 

be obtained which is identical to the usual Maximum 

Principle optimal solution. With this approach, a 
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stochastic meaning was attached to the weight matri-

ces in the index of performance. It was concluded 

that control actions order of magnitude and accepted 

deviations in state can be interpreted as dispersions 

using variances.  

Assuming the dynamic system reversible and 

analogous to a virtual multistage process with invert-

ed flux, the same approach was then used to develop 

a direct discrete sequential regulator. The resulting 

controller is one where the gain depends only on past 

and present information about the system and where 

the desired behavior of the controlled state is pre-

scribed one step ahead. The minimization of control 

action and of state deviation as a formally equivalent 

problem of optimal estimation allowed again to in-

terpret the weight matrices as error covariance matri-

ces and to empirically use formally equivalent noise 

process to compensate for the bad numerical behav-

ior in the calculations of the control gain. Thus, this 

formal equivalence opens the possibility of using 

results already available in state estimation to im-

prove the numerical performance of the developed 

controller. 

The preliminary test results are encouraging. 

The fact that the control strategy can be established 

by prescribing a virtual state one step ahead and that 

future system dynamics knowledge is not needed to 

calculate the present control action makes this con-

troller suitable for application on nonlinear systems 

control where linearized and discrete local approxi-

mations can be used combined with adaptive 

schemes. 
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