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Abstract— A new form of solution is developed for the problem of the stochastic optimal regulator of discrete dynamic linear
systems. Initially, using the optimality principle of Dynamic Programming it is shown that the solution to this problem can alter-
natively be obtained employing optimal linear estimation in each stage or step of discretization. Next, a new controller is ob-
tained, as the result of hypothetically assuming the dynamic system reversible and analogous to a virtual multistage process with
inverted flux and of treating the solution in an alternative and equivalent form employing optimal linear estimation. This new
controller is a direct discrete sequential one; that is, a controller whose gain only depends on past and present information about
the system. To illustrate the method behavior and to allow comparison with a previously developed similar heuristic approach,
preliminary tests are done using the same test problem of satellite attitude control. The proposed solution is expected to lead to a
more adequate controller to be used in adaptive control schemes.

Keywords— Stochastic Optimal Control; Optimal Regulator; Dynamical Systems Control; Dynamic Programming

Resumo— Uma nova forma de solugéo é desenvolvida para o problema do regulador 6timo estocastico de sistemas dinamicos
lineares discretos. Inicialmente, a partir de abordagem pelo principio da otimalidade de Programagdo Dindmica, mostra-se que a
solucéo do problema pode ser obtida de forma alternativa equivalente, pela utilizagéo de estimacéo linear 6tima, em cada estagio
ou ponto de discretizagdo. Em seguida, obtém-se um novo controlador como resultado de hipoteticamente se admitir o sistema
dinamico reversivel e analogo a um processo de maltiplos estagios, que virtualmente evolui no sentido dos tempos decrescentes,
e de se tratar a solucéo de forma alternativa equivalente pela utilizacdo de estimagéo linear 6tima. Este novo controlador é se-
quencial direto, isto é, um controlador cujo ganho s6 depende de informagdes passadas e presentes do sistema. Para ilustrar o
comportamento do método e para permitir comparacdo com uma abordagem heuristica semelhante, previamente desenvolvida,
testes preliminares séo feitos utilizando um mesmo problema teste de controle de atitude de satélite. Espera-se que a solugéo pro-
posta leve a procedimento mais adequado para 0 emprego em esquemas adaptativos de controle.

Palavras-chave— Controle Otimo Estocastico; Regulador Otimo; Controle de Sistemas Dinamicos; Programagéo Dinamica.

1 Introduction

es in the reversed sense. If the Dynamic Program-

In the search for an optimized solution of a lin-
ear system control problem it is usual the adoption of
a quadratic index of performance. The gains of the
resulting controller for the usual optimal control
approach rely on future system dynamics knowledge.
If Dynamic Programming (e.g., Bryson and Ho,
1975) principle of optimality and parameter optimal
linear estimation (e.g., Jazwinski, 1970) are applied it
can be shown that the optimal control can be equiva-
lently determined in each stage. Though with this
approach a stochastic meaning of the inverse of co-
variance matrices is given to the weight matrices, the
characteristic of relying on future system dynamic
knowledge still remains. This is a serious limitation
in the most common situations where the linear dy-
namics is only a local approximation of the dynam-
ical behavior of the system and where adaptive
schemes are necessary.

In this work a new sequential controller appli-
cable to discrete linear systems is proposed which
has the distinctive characteristic of having the gener-
ation of gains only dependent on past and present
system information. Based on the fact that the transi-
tion matrix does always have an inverse, the discrete
linear system is viewed as a process of multiple stag-
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ming principle of optimality is applied, it is again
possible to formally treat the control action determi-
nation in a typical stage as a problem of parameter
optimal linear estimation. However, this can now can
be done in the sense of progressing time, i.e., such as
to have a direct sequential controller.

The new and original version presented is in-
spired and related to a previous work (Rios Neto and
Cruz, 1990) in which a regulator type of controller
also capable of operating in the direct and sequential
form was heuristically proposed. This present version
reconsiders, reviews and updates a previous prelimi-
nary version (Rios Neto, 1990) in a renewed effort of
establishing theoretical basis for other previous heu-
ristic approaches adopted to synthesize adaptive
controllers applied to ship control (Rios Neto and
Cruz, 1985) and satellite control (Ferreira et al,
1985). If it is considered the interpretation of model-
ing control actions magnitude and deviations in state
or output as dispersions using variances, then the
new controller proposed is related to minimum vari-
ance controllers (e.g.: Li and Evans, 1997, 2002;
Kharrat et al, 2010) and to predictive control
schemes where Kalman filtering is used to estimate
the control actions (e.g.: Silva and Rios Neto, 2000;
Silva, 2000; Silva and Rios Neto, 2011).
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In what follows, section 2 presents the formula-
tion and usual form of solution of the problem as
presented in Bryson and Ho (1975). In section 3, the
proposed approach is developed, keeping the use of
Bryson and Ho (1975) notation. In order to allow
comparison of performance with a similar approach,
section 4 presents results of preliminary tests using
the same problem of satellite attitude control as in
Rios Neto and Cruz (1990). Finally, in section 5 a
few conclusions are drawn.

2 Usual Formulation and Solution

Given the discrete dynamical system and the
correspondent observations for i=7,2,...,n-1:

x(i + 1) =0¢0+1,)x@) + T'@Du@) +w(@)
= fi(x(@,u@®, w@®) 1)

y(@) = HOx@) + v(D), 2

where v(i), w(i), x(0) are zero mean Gaussian, such
that for j=1,2,...,n-1:

Elv@w" (D] =0, E[x(0)w” ()] =0,
E[x(0)v" ()] = 0, Elw@Dw" ()] = ()8
E[x(0)x"(0)] = P(0), E[v()v" ()] = R(})8;;.

The objective is to control the system to get x(i) as
close to zero as possible, according to a given strate-
gy, as, for example, that of minimizing the criterion
of performance:

] = E[%xT(n)S(n)x(n) + %Z?;ol(xT(i)A(i)x(i) +
u" (DBDu@)], (©)

where S(n), A(i), B(i) are weight matrices, assumed to
be positive definite.

The solution to this problem obey the prin-
ciple of separation (see, for example, Bryson and Ho,
1975), and is as follows, supposing that S(n) and P(0)
are given.

u(i) = -C(Hx, (4)
2@ = 2@ + KOy — HD(D), (®)
7@ +1) = oG+ 1,DR() + F'(Du* (D), (6)
c@i) = (IS + Dr@ +BWM) Q)

S+ Db+ 1,D), @)
K@ =P@OHT(NHOPOHT (@ +RD), (®)

SW=¢"G+1L,DSE+ DG +1,0) —CTO(BG +
rr)s@+Dra)c@ + A@), 9

P(i+1)=0>G+1,)PWHeTE+1,0) + Q), (10)
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P() = (I — K(OHD)PO( - KOHD)' +
K@ORGOKT (D). (11)

The solution has the same structural form as
that of the correspondent deterministic problem
where there is a perfect knowledge of the state. The
difference is that the control action is calculated
using the value of the best estimate of the state, as
given by the Kalman filter. The difficulties with this
solution are those related to: (i) the choice of the
weight matrices S(n), A(i), B(i), (ii) the fact that the
gains C(i) depend on information which have to be
generated from final to present time, complicating its
application to the control of time variant systems
with modeling errors.

3 Alternative Equivalent Form of Solution

The optimal control problem of Equations (1)
and (3) of previous section can be viewed and treated
considering a correspondent process of multiple
stages as in Figure 1, where each stage corresponds
to a step of discretization (Eg. (1)).

u(0), w(0) u(1), w(1) u(n-2), w(n-2) | u(n-1), w(n-1)

x(2) x(n-2)

Figure 1: Dynamical System as a Process of Multiple Stages

The optimal control problem can then be solved
considering the principle of certainty-equivalence,
using the optimality principle of Dynamic Program-
ming. With this approach, the optimal control can be
determined starting in the last stage and progressing
back to the first stage.

Vi (Ya—1) = ming(n_qy E[1/2(xT (0)S(n)x(n) +
xT(n— DA — Dx(n —1)
+uT(n—1)B(n — Dun — 1)) 1Y,_4], (12)

where, {y(i):i=0,1,2,..,n—1}=Y,_, is the set of
known measurements. Considering,

2@ =x(@) +e@@), i=012,..,n—1, (13)

where e(i) is orthogonal to the estimate z(i) and not
dependent on u(i). Taking this in account and con-
sidering the dynamical constraint of Equation (1),
together with the fact that w(i) is a white noise, it
results, unless of constants regarding the minimiza-
tion with respect to u(n — 1), that, equivalently:

Vi(Ypo1) = ming 1) [1/2(¢(n,n —DX(n - 1) +
rin—Dun-1D)"s@(d(nn—-D2n—-1)+
r(n-Dun-1)+

uT(n—1)B(n — Duln - 1))]. (14)

In the last stage, the solution of this minimization

problem can then be shown to be formally equivalent
to the optimal minimum variance solution of the
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parameter estimation problem that follows (see e.g.
Bryson and Ho, 1975).

O=un—-1D+¢gMn-1), (15)
0=x(n)+ &.(n), (16)

e,(n—1)~N(0,B71(n - 1)), &(m)~N(0,5~1(n)), and
x(n) is the estimated controlled state at last stage,
given by:

()= d(mn—DE¥(n -1 +T'(n—Dun-1). (17)

In fact, taking this value back in Equation (16), the
minimum variance estimate (see e.g., Jazwinski,
1970) of u(n — 1) results as:

an—1) = —(I"(n— DS —-1)+Bn 1))
I'"(n—1DSM)emn,n— DE(n—1). (18)

Formally comparing this expression with that of
Equations (3) and (7), it is seen that:

in-1)=-Cn—-1D2(n-1) =u*(n-1). (19)

Now using again the principle of optimality from the
stage previous to the last one, there results that:

Vo(Yn—2) = u%lli_%) E[(Vy(Yp-1) + 1/2(x"(n - 2)

An—2)x(n—2) +
uT(n—2)B(n— 2u(n — 2)) 1¥,_,], (20)

But, the optimal V,(¥,_,) is given by, unless of a
constant,

(Yop) = (@ n - DECR - 1)
—-Ir'n—1)Cn—-1)x(n-1)TSn)
(d(n,n—Dx(n—1)-T'(n—1)C(n—-1x(n—1))
+(Cn - D2 — 1)) B — (€ — DE(n — 1))
+2(n— DTAMn— DE(n — 1))]. (21)

If is taken in account that:f(n—1)=x%(n—-1) +
é(n—1), and that e(n — 1) depends on the observa-
tion y(n — 1), it finally results that:

Vo(Yuoz) = uI(ITl'Li—r%) [1/2((d(n,n— Dx(n—1)
—-rn—1)Cn—-1)x(n—1)TS(n)
(d(n,n—Dx(n—1) —T'(n—1)C(n— Dx(-1))
+(C—1Dx(n—1) B(n—1)
Ch-Din—1))+x(n—1DTAn - Dx(n—1)
+uT(n —2)B(n — 2)u(n — 2))] + cte. (22)

This minimization problem can then be shown to be
formally equivalent to the optimal minimum variance
solution of the parameter estimation problem that
follows:

0=x(n—1)+ef(n—1),
e¢(n—1)~N(0,A7(n - 1)), (23a)

0=—-Cn—Dx(n—1)+¢g,n—-1),
e,(n—1)~N(0,B~1(n - 1)), (23b)
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0=0¢o(nn—-—1Di(n—-1) —
I'n—1)Cn—1Dx(n—1)+ & (n),
£:(M)~N(0,571(n)), (23c)

0=un—2)+¢g(n-2),
e,(n—2)~N(0,B71(n—2)). (23d)

However, since the errors are independent random
variables, the first three equations can be processed
in batch, generating an a priori information to then
process the last equation. But this equivalently means
that for the stage previous to the last one, the follow-
ing a priori condition has to be considered for
%(n — 1), the controlled state:

0=x(n—1)+ &2(n—1). (24)

In the a priori distribution as given by condition in
Equation (24), the optimal trajectory has to satisfy
the condition of optimal solution according to the
principle of optimality, which requires that from an
outcome of the random process x(n — 1):

xn—1)=¢o(n,n—Dx(n—1)+TI'(n—Duln-1),
in—-1)=—-Cn-Dx(n-1). (25)

And, at the same time, this outcome has to be com-
patible with the distributions of Equations (15) and
(16), that is:

0=—Cn—Dx(n—1)+g,(n—1), (26)

0=0¢o(nn—-1x(n-1) -
I'n—1Cn—Dx(n—1) + &(n). (27)

The outcome compatible with the distributions of
Equations (24), (26) and (27), and which is optimal,
is equivalently given by the minimum variance esti-
mate (Gauss-Markov), which can be expressed as:

in—-1)=x(n—1)+¢em-1), (28)
x(n—1) =0, (29)
where x(n — 1) is the expected value conditioned to
the conditions of Equations (24), (26) and (27), and
with an estimated zero mean error &, with distribu-
tion:

Ele,(n—1Den—-1DT =AM -1 +CT(n-1)
Bn—-1DCn-1D+(@"(mn-1)—-CT(n-1)
rmm—-1)sm(dmn-1)-Trn-1)Cn-1))"

=(An-1D+d"mn—-1DSMd(n,n—1) - CT(n—-1)
(B(n—1) +I"(n— DS —1))Cn—1) " (30)

Comparing with Equation (9), it is seen that:
Elee(n—De,(n—=1DT]=5"1(n-1). (31)

With this result, the cycle of analysis for the
stage previous to the last one is done and the problem
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of determination of the optimal control in this stage
is formally equivalent to solving the optimal parame-
ter estimation problem:

0=un—2)+¢g,(n-2), (32)

0=x(n—1)+¢&n-1),
x(n—-1)=¢(n—1,n-2)x(n—-2)
+Ir(n—2)u(n—2). (33)

The solution of this problem gives the minimum
variance estimate:

un—2)=-Cn—-2)x(n—2) =u*(n—2), (34)

where C(n — 2) is as in Equation (7), taking i=n-2.

The validity for the remaining stages can be
demonstrated in a completely analogous way as that
done for the stage previous to the last stage.

4 Reverse Virtual Process of Multiple Stages and
Dynamic Programming Approach

Consider now the system of multiple stages of
Figure 2, where it is assumed the hypothetical and
virtual situation, in which the evolution of the states
x(i) is considered in a reverse sense, from final to
initial state. Though a hypothetical and virtual situa-
tion, this is numerically possible in the case of dis-
cretized linear dynamic systems, due to the fact that
the transition matrix does always have an inverse.

u(y, w(

uin-1), w(n-1) lu(n-!), win-g) uit), wit)

(n-1) X2 %)

x(n}

Figure 2: Process of Multiple Stages with Reverse Flux

Under this assumption, the following opti-
mization problem is posed:

Minimize: J = E[2 (x?(0) — x(0))7S(0)(x(0) — x(0))

+3 D (4D = x(O)TAD (4 (@ — x(D) +
uT(i — 1B — Duli — 1))], (35)

Subject to: x(i — 1) = ¢~ 1(,i — 1)x(i) —
d71Gi— DTG —-Dul—D +w(i—1))
= D (x(D),uli — 1), w(i — 1)), (36)

where, i=n,n-1,...,1, S(0), A(i), B(i) are weight matrices,
assumed to be positive definite, and x4(i) is the
desired trajectory to be followed.

As previously done, a Dynamic Programming
approach is taken in a total similar way as before, but
applied to a virtual reality. The optimal control can
be determined starting in the first stage and virtually
progressing back to the last stage.

Va(Y) = min E[1/2( (x(0) ~ x(0))"S(0) (x4 (0)
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—x(0)) + (x*(D) —x(M)TAD (x* (D) — x(1) +
u(0)B(0)u(0)) 1¥7], @37)

Where, now {y¥(i):i=mn,..,2,1} =Y’ is the set of
known virtual measurements. Considering

@) =x@) +ev(i), i=12,..,n, (38)

where e”(i) is orthogonal to the optimal virtual esti-
mate %¥(i) = E[x” (i) 1¥’] and not dependent on
u(i—1). Taking this in account, considering the
dynamical constraint of Equation (36), together with
the fact that w(i — 1) is a white noise, regarding that
the minimization in Equation (37) is with respect to
u(0) and that the conditioned expectation is with
respect to YP , it results that, unless of constants,
equivalently:

V1 (YY) = miny()[1/2( (x4(0) — $~"(1,0)(2¥ (1) —
I(0)u(0)))"s(0)(x?(0)
—o71(1,0)(&7(1) — I (0)u(0))) + u” (0)B(0)u(0))].(39)

Thus, in the last stage the solution of the associated
problem of control is formally equivalent to the op-
timal minimum variance solution of the parameter
estimation problem that follows.

0 = u(0) + £,(0), (40)
0 = x%(0) — 7(0) + &,(0), (41)

where &,(0)~N(0,B71(0)), &:(0)~N(0,57%(0)), and
xV(0) is the controlled however virtual state at last
stage, given by:

2(0) = ¢~ (1,0)(2¥ (1) — I (0)u(0)). (42)

The solution to this problem is given by the mini-
mum variance Gauss-Markov estimator:

2(0) = (I (0)$(0)r'(0) + B(0)) ™ IT(0)S(0)
() - 6(1,0x4(0)
= (0 (2" (1) - $(LOx(), 3

where $~1(0) is the covariance matrix of ¢(1,0)s,(0).

Notice that c?(0) # €(0), and that #(0) = 4V (0)
is a virtual control. At this point it is already neces-
sary to point out that in order to give practical use to
this result and come back to the real world of pro-
gressing time, one has to heuristically specify £¥(1)
such as to get regulation and notice that x4(0) can
only be chosen to be £(0), in a certainty equivalent
way. It all happens as if one had a predictive control
with one step ahead.

Now using again the principle of optimality
from the stage previous to the last one, there results:

Vo (¥3) = miny(qy E[(Va (Y1) + 1/2( (x*(2) -
x(2)TA@)(x(2) — x(2)) + uT (DBMu(1)) 1Y7],(44)
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But, the optimal v, (Y) is given by, unless of a con-
stant,

Vi (¥P) = [1/2((x*(0) — =1 (1,0)(2*(1) — I'(0)a(0))"
S(0)(x*(0) — $~(1,0)(2”(1) — I'(0)2(0)))

+(x?(1) = 2 ()TAD (x* (1) —
2V (1)) + 2" (0)B(0)@(0))].

If it is considered that: V(1) = x”(1) + e*(1), and
that V(1) depends on the observation y”(1), it re-
sults:

V2(¥y) = rlp(ilr)l[l/z((xd(O) - ¢ 1,0(x"(1) -

r(0)a(0))"s(0)(x4(0) -

—$~1(L,0)(&¥ (1) — F(0)u(0))) + (x4(1) —
(1) A D) — X(1) + &7 (0)B(0)u(0) +
u"(1)B(Du(1))]. (45)
Where, the condition of optimal solution, according
to the principle of optimality, requires that from an

outcome of x7(1) the optimal trajectory control has
to be such as to satisfy:

a(0) = ¢*(0) (¥ (1) — $(1,0)x4(0)), (46)
As done in Section 3.1, this minimization can
equivalently be viewed and interpreted as an optimal
minimum variance parameter estimation problem as
follows.
For the a priori condition:
0 =x%(1) — xV(1) + (1), 47

where £2(1)~N(0,471(1)), at the same time the con-
trolled xV (1) has to be an outcome compatible with:

0= €2(0) (£(1) - $(1,0)x4(0)) + £,(0),
0= (x%0)— 1 (LO)(E"(1) -
r)cv0)(x"(1) — $(1,00x4(0))) + &(0).  (48)

Or, in a more compact notation:
y¢(1) = H (1)x"(1) + &(D), (49)

yT (1) 2 ((€7(0)(1,0)x%(0)T: ((I(0)C*(0) —
[)$(1,0x4(0)"),

HET(1) 2 (CYT(0):(r(0)C¥(0) — 1)),
&) 2 (2,7(0): &7 (@), &(0) = $(1,0),(0),
E(1)~N (0,50‘1(1)).

The outcomes compatible with the distributions
of Equations (46) and (49),

(D) =x(1) + & (D), (50)
are given by the Gauss Markov estimator, which in

the Kalman form is given by:
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(1) = x4+ KM (¥ @) — H(Dx* (D) (51)

K(1) = 47 (AT (1) (HE DA (DHT (1) +
)
= (I, + A‘l(1)HCT(1)SC(1)HC(1))_1 HT(1)$¢(1),(52)

Elex(De," (D] = 571(1D)
= A~1(1)- K(D)HS(DA~1(1). (53)

With this result the cycle of analysis for the
previous to last stage is complete and the problem of
determination of the optimal control is formally
equivalent to the parameter optimal estimation prob-
lem that results combining Equation (50), repeated
bellow, with the condition in the control dispersion:

XP(1) = x7(1) + & (1),
(54)
0 =u(1) +&,(1),

where &,(1)~N(0,B71(1)), & (1)~N(0,57(1)), and
the dynamical constraint has to be considered:

(1) = ¢ (2D2"(2) - ¢ D (Mu(). (55)

The solution to this problem is again that given by
the minimum variance estimator:

(1) = ¢* () (#°(2) - $EDFD), (56)

cv() = (rrsSmr) + B(1))'1rT(1)§(1), (57)

where $~1(1) is the covariance matrix of $(2,1),(1).
For the other stages the situation is analogous

and it is only necessary to adequate the indices of

Equations (49) to (57), resulting for i=1,...,n-1:

S_‘l(i) = <1>(i +1, i)S‘l(i)c])T(i +1,0) (58)
x0(0) = x4() + K@)y (@) — H (Dx4(D) (59)

K@) = A OHT @ (DA OHT @ + 57 D)
= (1n + A‘l(i)HCT(i)SC(i)HC(L’))_l HT (S, (60)

Elex(De," D] = 571D

= A"1()- K(O)H(DA(). (61)
y<" @ = (€G- DG, i — Dxd(i - 1))T:

(G = DC"( = 1) = LG, i — Dx(i = D),
HE'@D 2 (CY (= D:(ri -1 -1 1)),
&' 02 (e -5 G- D),

E(i—1) = d(i,i — Deg(i— 1),
ED~N(O, 57 ().

a() = ¢*() (27 +1) — ol + LOFD), (62)
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cv(@) = (I"(HOSHOI @ + BD) T H)S(), (63)

Where, 4(i) = @V (i) is a virtual control. Thus, as
already pointed out before, to give practical use to
this result and come back to the real world of pro-
gressing time, one has to heuristically specify
£Y(i+1) such as to get regulation and x4(i) (Eq.
(59)) can only be chosen to be £(i), in a certainty
equivalent way. The use of the controller in order to
stabilize the system, in the direct sense of real world,
from t, to t,, has to necessarily presuppose that a
strategy is adopted to condition decreasing £V (i + 1)
values. Thus, it seems reasonable that (Eq. (59)):

x4(0) = 2(0). (64)

And since there can be a choice for conditioning
what is going to happen in the future, it also seems
reasonable that (Eq. (62)):

2V + 1) =o x4(i), < 1. (65)

The choice for x%(i) as being equal to (i)
implies that the dispersion of the error £2(i) has to
be compatible with the order of magnitude of the
error in the implementation of the control @ (i). The
inferior limit of this error £2(i) dispersion, in the
ideal situation of not having software and hardware
imprecisions in the implementation of the control,
would be of the order of the dispersion of the state
estimation error. However, in practical situations the
dispersion provoked by the controller is usually one
order of magnitude bigger than that of the state esti-
mator. Thus, in practical situations where state esti-
mation errors are present it is reasonable to assume:

E[(2,(D)2] = BP; (D), (66)

where P;;(i) is the jth term of the diagonal of the
matrix of covariances of the errors in the state esti-
mation and g > 1, and usually g > 100.

5. Preliminary Testing

For the sake of comparison, the example taken
for preliminary testing is the same as in Rios Neto
and Cruz (1990). It is based on a model of double-
gimbaled momentum wheel for the attitude control of
a geostationary satellite, as given in Kaplan (1976).
The satellite has the following characteristics: mass
of 716 kg; moments of inertia 1,=1,=2000 N.m.s?,
l,=400 N.m.s*; nominal wheel momentum of 200
N.m.s; and orbital frequency of 7.28E-05 rad/s. It is
equipped with sensors capable of observing roll and
pitch with accuracy of 5.8E-05 rad as expressed by
their standard deviations. The satellites axes X, y, and
z are respectively in correspondence with roll, pitch
and yaw; the wheel axis coincides with the y axis. In
discrete-time form, based on a discretization time
interval of 0.1 s, the state model is as follows:
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(i +1,0)
[ 1 0 121E—-10 0.1 0 —50E - 04
| 0 1 0 0 0.1 0|
_|-121E-10 © 1 50E-04 0 0.1 |
—7.28E—-07 0 3.64E—-09 1 0 -0.01
0 0 0 0 1 0 J
—3.64E —09 0 —7.28E —07 0.01 0 1
[0.25E — 05 0 —833E —09
| o 1.25E — 05 0 |
I = |8.33E - 09 0 2.5E — 07 |
5.0E — 05 0 —2.5E - 07
0 2.5E — 04 0
2.5E — 07 0 5.0E — 05

Q(i) = diag(1.73E — 28; 1.09E — 24; 1.75E — 29; 6.90E — 27; 4.34E —
22;7.01E — 27)

The initial conditions and controller parameters
adjustment were as follows:

£7(0) = [2.D — 02; 2.D — 02; 2.D — 02; —2.D — 06; —2.D —
07; —6.D — 07],

A7Y(i) = diag(2.D — 10;2.D — 10;2.D — 12;1.D — 06;1.D —
06;1.D — 06),

B(i) = diag(1.;10.;1.).

Where, the diagonal terms in A=1(i) were chosen
according to its meaning of the a priori variances in
the errors modeling the dispersions of controlled
states relative to the desired solution. In the case of
the variances modeling the dispersions in angles the
values were chosen in correspondence to the accura-
cies to be attained; and in the case of angle rates the
choice was such as to guarantee margins that allow
variations that may be necessary for convergence in
position. The matrix B~1(i) was chosen according to
the same meaning, to represent the allowed disper-
sions in control action.

To guarantee convergent increments in state
variables compatible with control action limits, the
following choices were made:

RY(i+ 1) = #;(i) — sign (;@-(i)) «1.D—05 =123,
(69)
RY(i+1) = —sign ()?j_3(i)) «1.D — 04, j = 4,5,6.

To avoid near singularity numerical behavior, in
analogy with what is done in state estimation with
the addition of process noise, the diagonal terms of
the matrix §-1(i) (Eq. (54)) were saturated from
below as follows:

STI@) =571 + A7L(). (70)
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Figure 3: Three Axis Attitude Control Angles

Under ideal simulation conditions of perfect
knowledge of state and no process perturbations, the
results obtained with the proposed controller are
quite satisfactory, as depicted in Figures 3 and 4. The
controller response could be taken in the limit of the
control action capacity for the problem at hand,
reaching a condition of satisfactory errors levels (of
the order of magnitude of 1.E-05 rad in roll and yaw,
1.E-06 rad in pitch, and angles rates below 5.E-05
rad/s).
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Figure 4: Three Axis Attitude Control Angle Rates
6. Conclusions

A new optimal direct sequential regulator for
discrete linear systems was developed. It is optimal
in the sense of minimizing a quadratic index of per-
formance in the deviation errors relative to a desired
dynamic system trajectory. It is direct and sequential
in the sense that the gains to calculate control actions
are obtained in each progressing time step.

Using the Dynamic Programming principle of
optimality, it was first shown that employing a for-
mally equivalent estimation approach a solution can
be obtained which is identical to the usual Maximum
Principle optimal solution. With this approach, a
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stochastic meaning was attached to the weight matri-
ces in the index of performance. It was concluded
that control actions order of magnitude and accepted
deviations in state can be interpreted as dispersions
using variances.

Assuming the dynamic system reversible and
analogous to a virtual multistage process with invert-
ed flux, the same approach was then used to develop
a direct discrete sequential regulator. The resulting
controller is one where the gain depends only on past
and present information about the system and where
the desired behavior of the controlled state is pre-
scribed one step ahead. The minimization of control
action and of state deviation as a formally equivalent
problem of optimal estimation allowed again to in-
terpret the weight matrices as error covariance matri-
ces and to empirically use formally equivalent noise
process to compensate for the bad numerical behav-
ior in the calculations of the control gain. Thus, this
formal equivalence opens the possibility of using
results already available in state estimation to im-
prove the numerical performance of the developed
controller.

The preliminary test results are encouraging.
The fact that the control strategy can be established
by prescribing a virtual state one step ahead and that
future system dynamics knowledge is not needed to
calculate the present control action makes this con-
troller suitable for application on nonlinear systems
control where linearized and discrete local approxi-
mations can be used combined with adaptive
schemes.
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