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Abstract—The control-configured vehicle (CCV) approach for aircraft non-typical maneuvers has usually been carried 

out by eigenstructure assignment in order to decouple flight dynamic modes. This eigenstructure assignment approach, 

with eigenvalues and eigenvectors placement is thus restricted to a known and linear systems model. This work develops 

and tests a predictive neural control new technique applied to the aircraft non-typical maneuvering problem. This 

technique allows to deal with the mode decoupling by using artificial neural network (ANN) training in order to emulate 

the aircraft dynamics, and by using a predictive control to constraint the maneuvers. A comprehensive presentation of 

the predictive control approach is made including analytic recurrent expressions of gradients needed in the optimization 

calculations. To demonstrate the technique performance tests are done using a literature model of a stabilized aircraft 

and commanded maneuvers of: pitch pointing; altitude rate; pitch pointing and altitude rate simultaneously; and 

stabilization.  

 

Index Terms— Control Configured Vehicle, Aircraft Control, Neural Network, Predictive Control. 

I. INTRODUCTION 

The high performance military aircrafts design advances have been focused in the avionics weapon aiming systems in 

conjunction with high maneuverability control in order to expand the target engagement envelope and evasive maneuvers. Back 

in 1972, the F-104 Phanton YRF-4C prototype already had the CCV concept tested and denominated PACT (“Precision Aircraft 

Control Technology”). These vehicles usually need to be hardware specially configured with canards for control augmentation 

and fuel systems tank exchange for allowing a gravity center displacement in order to increase control components. In terms of 

control all the implementation up to now have been based on the mode decoupling obtained by the eigenstructure assignment 

The theoretical work of Srinathkumar [1] supports the possibility of directly controlling decoupled modes in linear systems and 

several works (e.g., Andry et al [2], Sobel et al [3]-[6], and Garrard [7]) have focused their results on the linear systems mode 

decoupling by state or output feedback for eigenstructure allocation. This approach needs model knowledge and eigenstructure 

assignment to be implemented, and are subjected to the limitation that parametric variation due to maneuver conditions can 

couple the modes again.  

The predictive control approach is an attractive method that provides more freedom of design. It allows an output predefined 

profile reference to be tracked by the aircraft, with the control variables being constrained inside the saturation levels. The 

decoupling is obtained by the on-line optimization of the output receding horizon errors through the minimization of a quadratic 

function, where output errors to prescribed references are weighted against control smoothness. The decoupling is thus obtained 

by restricting the output time response at the desired reference values; for example, if one desires pitch angles constant and path 

angle null it is enough to set the output components at these values in the horizon future steps.  

The model identification is part of the predictive control design and in this work it is implemented using a NARMA neural 

network model [8]. This internal ANN model provides the propagated horizons and the analytic gradient for the predictive 

control optimization algorithm. 

II. NEURAL PREDICTIVE CONTROL  

The neural predictive control is carried out in two stages. The first is to identify the system using the artificial neural network 

(ANN) and the second to include this ANN identification model as an internal model for the control calculations. The (ANN) 

function provides the sensitivity of output to input control in order to feed the optimization algorithm. Figure 1 shows the  
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architecture of this method. The neural network as an internal model in the optimization scheme allows the analytical gradient 

extraction without need of system model. 

Even the most recent works in this area (Sorensen et al [9], Zhao et al [10]) have considered particular situations for Jacobian 

and gradient calculations. Thus, for the sake of completeness in what follows, the analytical Jacobian and gradient are developed 

for a general feedforward neural net architecture with any number of hidden layers and type of activation function [8]. The full 

analytic gradient calculation allows the generalization for tapped delay times and horizon propagation specifications.  

 

 

Fig. 1 – Predictive Neural Control Architecture 

 

 

Optimization problem 

 

Consider a dynamic system described by (1): 

 

),(f uxx =      ,   ),(h uxy =               (1) 

 

where rR,mR,nR  yux  are the system state, control and output, respectively. The method consists in minimizing the 

following performance index (2):  
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Where the output errors with respect to a specified reference trajectory and control smoothing are weighted in the quadratic 

form, and the outputs and control are constrained such that:   maxee  ,  maxuu  , and   maxuu  . 

 

The optimization of performance index (2) will certainly yield a local solution because the output and control constraints are 

attained at each sample time. The neural net emulator is trained for providing a one step ahead output predictions and arranged in 

cascade to extend the model propagation horizon at discrete steps. The complexity emerges when there are general delayed 

system outputs in the neural network inputs. Herein this problem was considered and a recursive formula was developed [8] 

which allows the analytic Jacobian and gradient determination for the cascaded neural nets. Figure 2 shows the neural net 

propagation starting at the initial instant “i” to the final instant “i+N2”: The control horizon “Nu” usually is less than the output 

horizon, and control is maintained constant at the value u(i+Nu) from “i+Nu” to “i+N2”. For this problem, for the sake of 

generalization, the delayed inputs corresponding to outputs feedback are considered of “n” order. 
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Fig. 2– Net propagation 

 

Jacobian and gradient calculation 

 

 

For N1 = 1 in (2), for formulae simplification, the gradient with respect to control and only of the term corresponding to the 

tracking error is (3): 
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The Jacobian at the “i” instant is defined (4) as: 
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where each matrix element is (5): 
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corresponding to the matrix “ pi+ ” line and “ qi+ ” column respectively; where the diagonal terms are calculated by straight 

application of the backpropagation rule and the out of diagonal terms are calculated in a recursive way as will be shown in what 

follows; and where the control values are the same after the control horizon Nu and equal to the value at this point in the 

predictive control horizon.  

 

To get the recursive calculations, start considering that the intermediary Jacobians 
yyJ  of the output at the “p” step with 

respect to the delayed outputs at the “q” step (that is inputs to the neural network at the “p” step, see Figure 2), are obtained by 

straight application of the backpropagation rule, as (6): 
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So, that for a given “n” generic order (delayed outputs) the Jacobian can be constructed in the recursive form (7): 
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Where:  np,....,2p,1pj −−−= ,  1Nu,....,0q −=   , and Nu,....,1qp +=      

 

For Nup  , the Jacobian takes the following form (8): 
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for 2N,....2Nup +=   ,  

 

Due to causality these Jacobians are calculated as (9) and (10): 
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0J =++ )qi,pi(yu ,   for          qp                                     (10) 

 

The total gradient, including the control smoothing component is (11): 
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Where, the weighted output error is (12): 
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and the u derivatives (13): 
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The recurrent formula for Jacobian and gradient calculation allows a generalized approach related to the system order, output 

and control horizons. Once the total gradient is available the optimization problem to get the predictive control in each step can 

be numerically solved.  



III. DEMONSTRATION EXAMPLE 

 

The demonstration example is that of an aircraft longitudinal motion model, the one presented in the Andry et al. work [2], 

with the same data for analysis and results evaluation. The model is of an aircraft longitudinal motion at 3000 ft of altitude, 0.6 

mach [2]. Figure 3 illustrates the state and input variables in the aircraft coordinate system: 

 

 

Fig. 3 – Variables Definition 

 

 

 The variable definitions are: 
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The input control is defined as (14): 
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The linear system is defined as (15): 
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where the variables are (16), (17) and (18): 

 



 

 Tfeq =x                                                 (16) 
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where the pitch angle is related with the flight path and attack angles by (19): 

 

+=                 (19) 

 

The system (20), control (21) and output (22) matrixes are: 
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The open loop eigenvalues are (23): 

 

]00.2000.2000.045.566.7[ −−−=λ              (23) 

 

The closed loop eigenvalues are taken as [2] and allocated to cl  (24) by Matlab “place” function in order to stabilize the 

system in a trivial procedure: 

 

]5.19191j2.46.5j2.46.5[cl −−−−−+−=λ              (24) 

 

The corresponding gain matrix  “K” in the stabilizing feedback control is (25): 

 










−−−

−−
=

0535.00748.00567.01136.08553.0

0886.04780.02955.47581.04839.1
K              (25) 

 

It should be noticed that there is no eigenvector assignment for this system, which means there isn’t decoupling until this step. 



The Neural network used for identification model is a three layer perceptron network with 12 fan out, 20 sigmoid and 5 linear 

neurons in the input, hidden and output layer, respectively. The net inputs are composed of input control at the one tapped delay 

time, and of outputs at the two tapped delay time, in the total of 12 input elements. Figure 4 shows this architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – Network architecture 

 

The input training pattern used (Figure 5), with 3 stages, yielded a better sensitivity to control inputs. The alternating 

command inputs components a each time step provided a control weighting training. The training points were taken at each 0,2 

seconds and the first 1000 points are shown. The pulse width duration is enough for settling time transient response. 
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Fig. 5 – Network training pattern 

 

The training method used was the “trainlm” Matlab function which consists of Levenberg-Marquardt algorithm; the 

initialization method used was the Nguyen-Widrow (“initnw”), and the performance evaluation method used was the mean-
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squared-error (“mse”). The Figure 6 shows the net training performance achieved. 
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Fig. 6 – Network Training performance 

The network validation set was obtained by oscillatory inputs.  Figure 7 shows the error profile on the validation data set and  

Figure 8 shows that same for the pitch rate. 
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Fig. 7 – Neural net output erros 
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Fig. 8 – Pitch rate output error 

 



IV. RESULTS 

 

The diagonal matrix terms R(i,i) in (2), herein will be cited as Ri, and the control matrix Ru(i,i) diagonal terms are assumed all 

equal to Ru. 

 

Figure 9 shows a case of control with Nu=1, Ru = 0.5, R1=10, R2=R3=0. This means that there is pitch demand only and the 

flight path and attitude profiles are typical conventional coupled flight dynamics.  Figure 10 points indicate the flight path, and a 

line segment at each point represents the attitude. The graphic scale was dimensioned in order to yield a visibility augmentation 

of the attitude angle. 
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Fig. 9 – 3-degree pitch demand: R1=10, R2=R3=0, Nu=1, N2=3, Ru = 0.5. 
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Fig. 10 – Flight path  for 3-degree pitch demand: R1=10, R2=R3=0, Nu=1, N2=3, Ru = 0.5. 

 

Figure 11 shows the pitch pointing case. Herein one sees an oscillation transient and the Figure 12 shows the altitude change 

prior to stabilization due to the transient. 
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Fig. 11 – 3-degree pitch pointing: R1=10, R2=R3=0, Nu=1, N2=3, Ru = 0.5. 
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Fig. 12 – Fligth path for 3-degree pitch pointing: R1=10, R2=R3=0, Nu=1, N2=3, Ru = 0.5. 

 

This methodology allows also a greater freedom of design for profiles demand. The next case (Figures 13 and 14) the R2 

component was set nonzero, which means to add a pitch rate restriction. This setup yields a transient damping and so, a better 

performance. 
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Fig. 13 – 3-degree pitch pointing: R1=R2=R3=10, Nu=1, N2=3, Ru = 0.5. 
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Fig. 14 – Fligth path for 3-degree pitch pointing: R1=R2=R3=10, Nu=1, N2=3, Ru = 0.5. 

 

Figures 15 and 16 show the altitude rate mode.  
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Fig. 15 – 3-degree altitude rate: R1=R2=R3=10, Nu=1, N2=3, Ru = 0.5. 
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Fig. 16 – Flight path for 3-degree altitude rate: R1=R2=R3=10, Nu=1, N2=3, Ru = 0.5. 

 

Figures 17 and 18 show the negative 3-degree flight path demand with a positive 3-degree pitch demand simultaneously. The 

results confirm the methodology possibilities. 
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Fig. 17 – Negative 3-degree altitude rate with positive 3-degree pitch pointing: R1=R2=R3=10, Nu=1, N2=3, Ru = 0.5. 
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Fig. 18 – Flight path for negative 3-degree altitude rate with positive 3-degree pitch pointing: R1=R2=R3=10, Nu=1, 

N2=3, Ru = 0.5. 

 

 

The next cases show the possibility of stabilization of an unstable system. Figure 19 shows an unstable case with R2 =1 pitch 

rate demand. Figure 20 shows a same case with R2 set to 10 and the system stabilization. 
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Fig. 19 – 3-degree altitude rate: R1=10, R2=1, R3=1, Nu=2, N2=4, Ru = 0.05. 
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Fig. 20 – Flight path for 3-degree altitude rate: R1=10, R2=10, R3=1, Nu=2, N2=4, Ru = 0.05. 

 

V. CONCLUSIONS 

The results demonstrate that the predictive neural control technique yields the output profile requirements generalization when 

compared to the eigenstructure assignment. The use of a Neural Network as an internal model gives the possibility of the 

technique being also implemented in non-linear systems control. 

Although in the demonstration example the linear region for unstable cases can have been violated, the response analysis can 

be considered valid in order to demonstrate only numerical performance. The stabilization by output restriction was another 

application possibility verified and it suggested using open loop eigenvalues for the stabilization performance. 

In what concerns the modeling with the Neural Network, the training pattern choice was found to be relevant; several training 

sets achieved the goal precision performance, but failed as an identifier model. The net sensitivity to the inputs (delayed outputs 

and controls) was affected by these patterns. The pattern used with three stages, where each control was separately set at the two 

initial periods showed better performance in sensitivity sense. This behavior suggests a study about net training, focusing 

sensitivity. 

The proposed technique, that allows to extend the decoupling mode design for non-typical maneuvers and stability control, 

opens the possibility of several applications, as flight director, trim flight parameters adjusting and other systems where the 



output references profile are the objective to be achieved.  

 

 

VI. REFERENCES 

 

[1] Srinathkumar, S., “Eigenvalue / Eigenvector Assignment Using Output Feedback”, IEEE Transactions on Automatic Control, AC-23, No. 1, 1978, pp. 79-
81. 

 

[2] Andry, A.N. Jr, Shapiro, and E.Y., Chung, J.C., “Eigenstructure Assignment for Linear Systems”, IEEE Transactions on Aerospace and Electronic 
Systems, Vol AES-19, No.5, Sept. 1983, pp. 711-730. 

 

 
[3] Sobel, K.M. and Shapiro, E.Y., “A Design Methodology for Pitch Pointing Flight Control Systems”, Journal of Guidance Control and Dynamics, Mar.-

Apr. 1985, pp.181-187. 

 
[4] Sobel, K.M. and Shapiro, E.Y., “Eigenstructure Assignment for Design of Multimode Flight Control Systems”, IEEE Control Systems Magazine, May 

1985, pp. 9-14. 

 

[5] Sobel, K.M., Shapiro, E.Y. and Andry, A.N. Jr., “Eigenstructure Assignment”, International Journal of Control, Vol. 59, No.1, 1994, pp. 13-37. 

 

 
[6] Sobel, K.,M. and Lallman, F. J., “Eigenstructure Assignment for the Control of Highly Augmented Aircraft”, Journal of Guidance. Vol. 12, No. 3, 1988, 

pp. 318-324. 

 
[7] Garrard, W.L., “Lateral Directional Aircraft Control Using Eigenstructure Assigment”, Journal of Guidance, Engineering Notes, Vol.21, No. 3, 1998, 

pp.523-525. 

 
[8] Cardenuto, N.C. “Aeronaves configuradas por controle do tipo preditivo neural”.  Ph.D. dissertation, Computation and Applied Mathematics Laboratory, 

INPE, São José dos Campos, SP, 2003. 

 
[9] Sorensen, P., H.; Norgaard, M.; Ravn, O.; Poulsen, N., K.  “Implementation of neural network based non-linear predictive control”, Neurocomputing, v.28, 

p. 37-51, 1999. 

 
[10] Zhao, H.; Guiver, J.; Neelakantan, R.; Biegler, L.,T. “A Nonlinear Industrial Model Predictive Controller Using Integrated PLS and Neural Net State-Space 

Model”, Control Engineering Practice, v. 9, p. 125-133, 2001. 

 

 

 

 


