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Abstract: A method for the solution of systems of linear algebraic equations is presented. It is derived using an
approach based on linear estimation theory and is directly related to a generalization of Huang’s method (1975)
proposed by Abaffy and Spedicato (1984). Exploring the approach adopted, the paper presents properties complemen-
tary to those found in the literature. Among these is included a Potter’s factorized form of the method. In terms of
applications, the method is analyzed as an alternative tool to get pseudoinverses, the solution of a class of quadratic
programming problems and of ill-conditioned linear systems where iterative schemes are necessary.
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1. Introduction

Huang [6] presented in 1975 a direct method to solve linear systems of the form
Hx =z, (1)

where x€R"”, z€R™, m<n, H 2[hy; hy;...; h,] with the h, linearly independent. This
method is related to an algorithm used by Rosen [9] to find feasible points when dealing with
linear equality and inequality constraints.

Abaffy and Spedicato [1] introduced in 1984 a generalization of Huang’s method, using
properties of deflection matrices, which can be viewed as a generalization of the concept of
projection matrix.

In this paper a different approach is adopted to get results similar to those of Huang [6] and
Abaffy and Spedicato [1]. Based on results of linear estimation theory, more specifically the
Kalman filtering algorithm (see, for example, [7]), a method is presented which is closely related
to the symmetric update version of Abbaffy and Spedicato’s method.

Properties complementary to those shown in [1.6] are also presented. Among these is a
property coming from results available in estimation theory and leading to an equivalent
factorized Potter’s form of the method [2]. This form is expected to improve the numerical
stability of the method, leading to an algorithm less sensitive to the effects of round-off errors.

To make some particular features of the method explicit, it is considered as an alternative tool
to solve pseudoinverses, a class of quadratic programming problems, and ill-conditioned linear
systems where an iterative scheme is necessary.
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2. The deterministic sequential filtering algorithm

The Kalman filtering sequential algorithm was developed to get the solution of linear
estimation problems, or, according to an alternative interpretation (see, for example, [2,7]), to get
the solution of the following optimization problem:

minimize f(x)=1[(x—X) A" (x = %) + (z — Hx) R"'(z — Hx)], (2)
where x, Xx€R"™; z€R™, HER™ X R" as defined in (1); R £ diag[r,. r,.....7,]ER™ XR"™,
positive definite; and 4 € R” X R” is symmetric and positive definite. The meaning attached to
x, A and R in estimation theory is not of interest here.

To solve the problem of (2), the Kalman filtering sequential algorithm can be given as follows:

Step 1. Take x,=Xx, Py=A.
Step 2. For i=1,..., m, compute

() x;=x_1+(z,— hix,_1) p;> (3)

pi=BP_\h;, B=(r,+hP_h)", (4)

(ii) P,=P, = phiP_,. (5)

In the limit case where r,=0, i=1, 2,..., m, the problem of (2) is reduced to the following
constrained optimization problem:

minimize  f(x)=1(x—%) 4 (x—X). (6)

subject to Hx =1z, (7)

which can also be solved by the algorithm of (3)—(5), with B, particularized to:
Bzz(hl,Pi—lhi)_l' (8)

By comparison with the results of [1], it is easily seen that the Kalman filtering algorithm
particularized to this limit case coincides with the symmetric update version of Abaffy and
Spedicato, in the situation where row pivoting is not done and when P, is chosen symmetric.

For the situation where rank( H) =m and B, in (8) is well defined, then x, as given by (3)
satisfies (1). These results are demonstrated in [1], including the case when the hypothesis of
symmetry of A4 is dropped. The proof that x,, as given by (3) is, in fact, the solution to the
problem of (6) and (7) is given in Theorem 2 of the next section.

3. Complementary properties

To further explore the implications of the procedure, the following generalized projection
matrix is defined:

P2 A—AH/(HAH/) "HA, (9)
where, for any i < m,
H'&[h; hyyoos by (10)

The matrix 4 can be any n X n matrix such that the inverse in (9) exists, but here it is taken as
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real symmetric and positive definite. By application of this definition, it is easily verified that:
P*H/ =0 (nXi,zero matrix), (11)
HP*=0 (iXn,zero matrix), (12)
and, as a consequence, for any v € R”
H,.(P,.Av) =0, (13)

and thus P/ projects v in the subspace orthogonal to that generated by the row vectors of H,.
Considering the previous results, it results that:

(i) PfAT'P, =P/, for j<i, (14)
where P, is as defined in (5) in the limit case when r;,=0, 1 <j<m, and for any i<m the
property follows by induction in j, applying (11);

(i) PA=P, fori=1,....,m, (15)

which again can be proved by induction, noticing it is true for i=1 (see (5)) and that by
assuming it to be true for 1 <i < m, then from (14):

sz—l PzilA P1+l (A AH+1(H;+1AH+1) Hz+1A) P 1=Py

as a consequence of
, ~1
H, Py = H'+1(PiA - PiAhi+l(hi+lPiAhz+1)

13

hi 1P iA) =0,
by applying (12) and considering that H/,, £ [H/: h,,].
A batch version of the algorithm of (3)—(5) can now be obtained.
Theorem 1. The solution x,, of system (1), as given by the algorithm of Section 2, can be
equivalently obtained as:

x,, = xo+AH' (H'AH) ™ '(z — Hx,). (16)

Proof. To prove (16) it is necessary to notice that for 0 <i<m —1
(1+AH'(HAH') 'H)x,., = (I+ AH'(HAH')""H)x,, (17)

a result that can be proved by taking x,., from (3) and (4) in the limit case, with z; given by (7)
and using properties (14) and (12). Equation (17) by induction leads to

(1+AH'(HAH') 'H)x,, = (I + AH'(HAH')""H)x, (18)
and, subsequently, to
x, +AH'(HAH') '(z — Hx,)) = xo+ AH'(HAH") " '(z — Hx,). (19)

But, since
z—Hx, =0 (as proved in [1]),
(19) is equivalent to (16), the result sought. O
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Another way of looking at the result x,, given by the sequential algorithm of Section 2 is as
the solution of an optimization problem, as in the following theorem.

Theorem 2. If A = A’, positive definite, then x,, is also a solution of the optimization problem: !
minimize J=%(x—x0),A_1(x—xo), (20)
subject to Hx =z. (21)
Proof. For x,, to be a solution of the optimization problem formulated, it is necessary and
sufficient that (see, e.g., [8]):
z—Hx,=0, (22)
Pvi(x,)=0, (23)
where P and VJ(x,,) are, respectively, the projection matrix associated to A and the gradient of
J evaluated in x,,:

PAT—-H'(HH') 'H, vJ(x,)2 g—i(xm).

Condition (22) is certainly satisfied, since x,, solves (1). By considering (16) and since
Pvi(x,)=PA Y x, —x,),
there results:
PvJ(x,)=PA Y (AH'(HAH") '(z — Hx,)} =0,
since PH’ =0, and thus (23) is verified. O

The approach of using results of linear estimation theory to get the method of Section 2 can be
further explored, adopting a factorized version of the algorithm [2]. The purpose is to have the
algorithm in a form that, though being mathematically equivalent, it has a better numerical
performance.

For the type of problem at hand, the Potter’s square root factorization (see, for example, [2])
seems adequate, and leads to the following alternative algorithm:

Step 1. Take x, =X, S;S; = P, = A.
Step 2. For i=1,2,..., m, compute

(i) Ui, = h;Sifl’ Bi= (vi,Ui)ﬁl* (24)
pi=BS: 10, (25)
xi=xi—1+(zi_hgxi—l)pi’ (26)

(ii) S;=8,_,—puv. (27)

Note that, once given P,_; = S,_,S/_;, there results from (27)
S;8/=P_,—phiP_,=P,
as in (5), and the proof of convergence follows straightforward.

! In fact, it can be proved that the algorithm of (3)—(5) holds also for 4 definite negative. If A4 is definite negative,
Theorem 2 is still valid, but the problem of (20) is changed to one of maximization.
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4. Applications and numerical examples
4.1. Solution of simultaneous equations and determination of pseudoinverses

Given a system of simultaneous equations
HX=2Z, (28)
with X2 (x®; x@; . x9)YeR"XRY and Z2(zV; z@;...; z(D)eR™ X RY, the al-
gorithm of Section 2 can be applied to successively (or simultaneously) solve
HxW =D j=12,...,q,

without the need of recalculating the vector p,’s for each j> 2. Notice that when g =m and
Z =1 (m X m identity matrix), then the problem is one of pseudoinverse determination.

4.2. Redundant equations

Based upon the result of Theorem 1, the application of the algorithm of this paper can be
extended to problems with redundant equations (see [9]). This can be done by including in the
algorithm the following test.

Test: 1f hP,_,h,+ 0 is not verified °, then:
(1) if z,—h/x,_; =0, then the equation correspondent to 4, is redundant and must be
ignored,
(it) if z,— h/x,_, # 0, then the problem has no solution. The equations are not consistent.

4.3. Quadratic programming

Consider the problem of
minimize (maximize) J=3x'Mx—b'x, M=M, (29)
subject to Hx =z, (30)

where the m rows of H are linearly independent and M is positive definite (negative definite).
The conditions for solving this problem are similar to (22), (23), where now

vJ(x*)=Mx*—b. (31)
In compact form it can be written as
H*x=z*, (32)

where
.

H z
x4 x4 | T,
H [PM] and =z [Pb]'
Relation (32) represents a system of equations with redundancy and can be solved in the

following manner:
(i) determine one solution for (30) with 4 = I (n X n identity matrix);

(33)

2 For considering round-off errors in the test, see [6].
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(ii) find the remaining equations of (32) by calculating PM and Pb, where P is as defined in
Theorem 2 and P = P, since A = I (see (15));
(iii) continue the solution of (32) using the algorithm of Section 2, including the test described
in Section 4.2 for redundancy identification.
Notice that, because of the sequential nature of the algorithm, the remaining equations of (32)
are obtained after the part corresponding to (30) has been solved.

4.4. Iterative solution of linear systems
Apart from its stability properties (see [3,6]) the deterministic sequential filtering algorithm
can be coupled with an iterative scheme to improve the result obtained in ill-conditioned

problems. Two ways of doing this are described.

Residue treatment
If x, is an approximation to an exact solution x of (1) and if one takes

r,&z— Hx,, (34)
the residue associated to x,, and

Ax = x—x,, (35)
then

HAx=r,. (36)
The residue treatment technique consists (see, e.g. [4]) in solving (36) and taking

x=x,+Ax (37)

as an improved value for the solution and in repeating the process as necessary with x,

substituted for the last value obtained in (37).
Notice that in the reiterations it is not necessary to recalculate the vector p, and, thus, the

number of calculations per reiteration is low.
4.5. Numerical example

An example is taken to illustrate the influence of round-off errors. (See [5, p.141].) Let

6 13 —-17 1
H= 13 29 —381, z= 2,
-17 -—38 50 -3
where H is ill-conditioned (condition number = 1441) and the exact solution is:
x'=(1, -3, —2).
This problem was solved in a Burroughs 6800, initializing the procedure with

P,=1(3x3), x4,=(0,0,0).
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Basic algorithm
Using the algorithm of (3)—(5), one gets, after initial iteration,

0.99999999933 4.72646206616 - 10~ ¢
x =1 —-3.00000058924 |, " =|6.98491930960 - 10~* |,
—2.00000044805 9.31322574616 - 10~ 1°

where the upper index is to indicate the number of iterations.
Reiterating twice with the residue treatment, there results:

0.99999999980 0.0
xP =1 -2.99999999971 |, r»=10.01.
—1.99999999985 0.0

Here the zeros are to be understood as the computer numerical zeros.

Whenever it is possible to get the residue (r,) with a better accuracy, a significant improve-
ment occurs in the solution by residue treatment. As an illustration for the previous example,
taking

4.72100509796 - 10~*
rM = 1705895217834 -10"¢ |,
227373675443 - 10~ 1°

calculated with double precision operations, there results in just one reiteration

1.00000000000
x@ = —3.00000000000 |,
—2.00000000000

which is the correct value under the number of considered digits (twelve).

Notice that only the residue "’ has to be calculated in double precision.

Factorized Potter’s algorithm
Using the algorithm of (24)-(27) one gets, after one iteration,

1.00000000083 2.32830643654 - 1010
xP =1 _300000000432 |- " =109.31322574616 - 10~ |-
— 2.00000000300 0.0

It 1s seen that these results have a better accuracy than those obtained with the basic
algorithm. Reiterating once with the residue treatment, there results:

0.99999999850 0.0
x? = —2.99999999501 |, r®=10.0|
—1.99999999671 0.0

Where the zeros must be understood again as the computer numerical zeros.
If the residue (" is calculated with double precision, the exact value is obtained in just one
reiteration.
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5. Conclusions

A deterministic sequential filtering algorithm for the solution of systems of linear algebraic
equations was presented. The method was obtained using results available in linear estimation
theory and was seen to coincide with the symmetric update version of Abaffy and Spedicato.

The method seems to be a good alternative in the solution of pseudoinversion and quadratic
programming problems. Associated to an iterative scheme, it provides a tool for the solution of
ill-conditioned problems.

The numerical performance of the factorized Potter’s version of the method indicates that this
form of expressing the numerical algorithm has a potential worth of being further explored. It
seems to be a recommended form to be used to attenuate numerical accuracy deterioration due
to computer round-off.
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