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Abstract." A method for the solution of systems of linear algebraic equations is presented. It is derived using an 
approach based on linear estimation theory and is directly related to a generalization of Huang's method (1975) 
proposed by Abaffy and Spedicato (1984). Exploring the approach adopted, the paper presents properties complemen- 
tary to those found in the literature. Among these is included a Potter's factorized form of the method. In terms of 
applications, the method is analyzed as an alternative tool to get pseudoinverses, the solution of a class of quadratic 
programming problems and of ill-conditioned linear systems where iterative schemes are necessary. 
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1. Introduction 

Huang [6] presented in 1975 a direct method to solve linear systems of the form 

= z ,  (1) 

where x ~ •", z ~ R m, m ~< n, H '  & [ha; h2 ; . . .  ; hm] with the h i linearly independent.  This 
method is related to an algorithm used by Rosen [9] to find feasible points when dealing with 
linear equality and inequality constraints. 

Abaffy and Spedicato [1] introduced in 1984 a generalization of Huang's  method, using 
properties of deflection matrices, which can be viewed as a generalization of the concept of 
projection matrix. 

In this paper a different approach is adopted to get results similar to those of Huang [6] and 
Abaffy and Spedicato [1]. Based on results of linear estimation theory, more specifically the 
Kalman filtering algorithm (see, for example, [7]), a method is presented which is closely related 
to the symmetric update version of Abbaffy  and Spedicato's method. 

Properties complementary to those shown in [1,6] are also presented. Among these is a 
property coming from results available in estimation theory and leading to an equivalent 
factorized Potter's form of the method [2]. This form is expected to improve the numerical  
stability of the method, leading to an algorithm less sensitive to the effects of round-off  errors. 

To make some particular features of the method explicit, it is considered as an alternative tool 
to solve pseudoinverses, a class of quadratic programming problems, and ill-conditioned linear 
systems where an iterative scheme is necessary. 
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2. The deterministic sequential filtering algorithm 

The Kalman filtering sequential algorithm was developed to get the solution of linear 
estimation problems, or, according to an alternative interpretation (see, for example, [2,7]), to get 
the solution of the following optimization problem: 

minimize f ( x )  : ½ [ ( x -  Y ) ' A - I ( x  - 2 )  + ( z -  H x ) ' R - l ( z  - H x ) ] ,  (2) 

where x, 2 ~ R"; Z ~ R m, H E Rm x R n as defined in (1); R & diag[r~, r 2 . . . . .  rm] ~ R m  × ~ m, 

positive definite; and A ~ R n × R n is symmetric and positive definite. The meaning at tached to 
Y, A and R in estimation theory is not of interest here. 

To solve the problem of (2), the Kalman filtering sequential algorithm can be given as follows: 

Step 1. Take x 0 = Y, P0 = A. 
Step 2. For i = 1 . . . . .  m, compute 

(i) x i = x i _  , + ( z i - h ; x ,  1)Pi, (3) 

Pi = l~ iP , - lh i ,  t~i = (ri q- h;P i - lh i )  -1,  (4) 

(ii) P~ = P~ a -p ,h;P~_~.  (5) 

In the limit case where r~ = 0, i = 1, 2 . . . . .  m, the problem of (2) is reduced to the following 
constrained optimization problem: 

minimize f ( x )  = ½(x - Y ) ' A  l (x  - Y), (6) 

subject to H x  = z, (7) 

which can also be solved by the algorithm of (3)-(5), with fl~ particularized to: 

1~, = ( h;Pi-ahi)  -1 (8) 

By comparison with the results of [1], it is easily seen that the Kalman filtering algorithm 
particularized to this limit case coincides with the symmetric update version of Abaffy  and 
Spedicato, in the situation where row pivoting is not  done and when P0 is chosen symmetric.  

For the situation where r ank (H)  = m and fl, in (8) is well defined, then x m as given by (3) 
satisfies (1). These results are demonstrated in [1], including the case when the hypothesis of 
symmetry of A is dropped. The proof that x m as given by (3) is, in fact, the solution to the 
problem of (6) and (7) is given in Theorem 2 of the next section. 

3. Complementary properties 

To further explore the implications of the procedure, the following generalized projection 
matrix is defined: 

Pi A & A - A11/ ( HiA1-1,')-aH, A ,  (9) 

where, for any i ~< m, 

H / &  [hl;  h2 ; . . .  ; h,] .  (10) 

The matrix A can be any n × n matrix such that the inverse in (9) exists, but  here it is taken as 
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real symmetric and positive definite. By application of this definition, it is easily verified that: 

and, as a 

A p P, H i = 0 (n × i, zero matrix),  (11) 

H i P  / = 0 (i  × n, zero matrix),  (12) 

consequence, for any v ~ N" 

=0,  (13) 
and thus Pi A projects v in the subspace orthogonal to that generated by the row vectors of H i. 
Considering the previous results, it results that: 

(i) PiAA -1pj = pi A, for j ~ i, (14) 

where Ps is as defined in (5) in the limit case when rj = O, 1 <~j <~ m,  and for any i ~ m the 
property follows by induction in j ,  applying (11); 

(ii) p A = p i ,  f o r i = l  . . . .  , m ,  (15) 

which again can be proved by induction, noticing it is true for i =  1 (see (5)) and that by 
assuming it to be true for 1 < i < m, then from (14): 

- A H , + a ( H i + I A H i + I )  H i + I A ) A  1+1  Pi+l pia+ l = Pia+ l A _  lPi+ l = ( A , , -1 -1p  = 

as a consequence of 

n i+ae i+  1 = H i + l ( e i  A - PiAhi+l(  h ; + l P i A h t + a ) - l h ; + l P i  A) = 0 ,  

t ix t 
by applying (12) and considering that Hi+ 1 = [H i • h,+l]. 

A batch version of the algorithm of (3)-(5) can now be obtained. 

Theorem 1. The solution x m o f  system (1), as given by the algorithm of  Section 2, can be 
equivalently obtained as: 

Xm = X o -~- A n t  ( H t A H ) - I (  z - Hxo) .  (16) 

Proof. To prove (16) it is necessary to notice that for 0 ~< i ~< m - 1 

( I  + A H ' ( H A H ' ) - I H ) x i + I  = ( I + A H ' (  H A H ' ) - I H ) x i ,  (17) 

a result that can be proved by taking xi+ 1 from (3) and (4) in the limit case, with z i given by (7) 
and using properties (14) and (12). Equation (17) by induction leads to 

( I + A H ' (  H A H t ) - l O ) x m  = ( I + A H ' (  n a H t ) - l H ) x o  (18) 

and, subsequently, to 

x,,, + A H '  ( H A H ' ) - I (  z - Hxm)  = x o + A H '  ( H A H ' ) -  l( z - HXo) .  (19) 

But, since 

z - Hxm = 0 (as proved in [1]), 

(19) is equivalent to (16), the result sought. [] 



264 R.L.U. de Freitas Pinto, A. Rios Neto / Solution of systems of algebraic equations 

Another  way of looking at the result x m given by  the sequential algorithm of Section 2 is as 
the solution of an optimization problem, as in the following theorem. 

Theorem 2. I f  A = A ' ,  positive definite, then x m is also a solution of  the optimization problem: 1 

minimize  J =  ½ ( X -  X o ) ' A - l ( x  - xo ) ,  (20) 

subject to H x  = z. (21) 

Proof.  For  x m to be a solution of the optimization problem formulated,  it is necessary and 
sufficient that (see, e.g., [8]): 

z - H x  m = 0, (22) 

P~TJ(xm)  = 0, (23) 

where P and 17J(Xm) are, respectively, the projection matrix associated to H and the gradient of 
J evaluated in x m: 

OJ 
p & I _ H , ( H H , ) - I H ,  ~TJ(xm ) ZX _.~(Xm).  

Condit ion (22) is certainly satisfied, since x m solves (1). By considering (16) and since 

P l T J ( X m )  = P a - l ( x m - -  Xo),  

there results: 

P V J (  xm)  = PA -1( A H '  ( H A H "  ) -  I ( z - H x  o )) = O, 

since P H '  = 0, and thus (23) is verified. [] 

The approach of using results of linear estimation theory to get the method of Section 2 can be 
further explored, adopting a factorized version of the algorithm [2]. The purpose  is to have the 
algorithm in a form that, though being mathematically equivalent, it has a better  numerical 
performance. 

For  the type of problem at hand, the Potter 's  square root factorization (see, for example, [2]) 
seems adequate, and leads to the following alternative algorithm: 

Step 1. Take x o = 2, SoS o = Po = A .  
Step 2. For  i = 1, 2 . . . . .  m, compute  

! ! ! 
( i )  V i =hiS  i 1, f l i=  (ViVi) -1 ,  

p,  = B,S~- lvi,  

x i = x i _ l  + ( z i - h ; x i _ l ) p i ,  

s ,  = 1 - p , v ' .  

Note  that, once given P~_ 1 = Si-1S, '- 1, there results from (27) 

S I S / =  P~_, -p~h;P~_l  = Pi 

as in (5), and the proof  of convergence follows straightforward. 

(24) 

(25) 
(26) 

(27) 

1 In fact, it can be proved that the algorithm of (3)-(5) holds also for A definite negative. If A is definite negative, 
Theorem 2 is still valid, but the problem of (20) is changed to one of maximization. 
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4. Applications and numerical examples 

4.1. Solu t ion  o f  s imul taneous  equat ions  a n d  de termina t ion  o f  p seudo inverses  

Given a system of simultaneous equations 

H X  = Z ,  (28) 

with X ~ ( x ( 1 ) ;  X(2);...; x ( q ) ) E R n x R  q and Z & ( z m ;  Z(2);...; z ( q ) ) E R m x ~  q, the al- 
gorithm of Section 2 can be applied to successively (or simultaneously) solve 

H x  ( j ) =  z ( j) ,  j = 1 , 2  . . . . .  q, 

without the need of recalculating the vector p~'s for each j >~ 2. Notice that when q = m and 
Z = I ( m x  m identity matrix), then the problem is one of pseudoinverse determination. 

4.2. R e d u n d a n t  equat ions  

Based upon the result of Theorem 1, the application of the algorithm of this paper  can be 
extended to problems with redundant  equations (see [9]). This can be done by  including in the 
algorithm the following test. 
Test: If h ; P , _ l h  i ~ 0 is not verified 2 then: 

(i) if z , -  h ; x i _  1 = 0, then the equation correspondent  to h i is redundant  and must  be 
ignored, 

(ii) if z i  - h~x,_ 1 4~ 0, then the problem has no solution. The equations are not  consistent. 

4.3. Quadra t ic  p r o g r a m m i n g  

Consider the problem of 
1 t t p minimize (maximize) J = ~x  M x  - b x ,  M = M , (29) 

subject to H x  = z ,  (30) 

where the m rows of  H are linearly independent  and M is positive definite (negative definite). 
The conditions for solving this problem are similar to (22), (23), where now 

~ T J ( x *  ) = M x *  - b.  (31) 

In compact  form it can be written as 

H * x  = z* ,  (32) 

where 

Relation (32) represents a system of equations with redundancy and can be solved in the 
following manner: 

(i) determine one solution for (30) with A = I (n × n identity matrix); 

2 For considering round-off errors in the test, see [6]. 
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(ii) find the remaining equations of (32) by calculating P M  and Pb, where P is as defined in 
Theorem 2 and P = Pm since A = I (see (15)); 

(iii) continue the solution of (32) using the algorithm of Section 2, including the test described 
in Section 4.2 for redundancy identification. 

Notice that, because of the sequential nature of the algorithm, the remaining equations of (32) 
are obtained after the part  corresponding to (30) has been solved. 

4. 4. Iterative solution of linear systems 

Apart  from its stability properties (see [3,6]) the deterministic sequential filtering algorithm 
can be coupled with an iterative scheme to improve the result obtained in il l-conditioned 
problems. Two ways of doing this are described. 

Residue treatment 
If x a is an approximation to an exact solution x of (1) and if one takes 

" (34) G = z - H x ~ ,  

the residue associated to x a, and 

A X  ix X -- Xa ,  (35) 

then 

H A x  = G. (36) 

The residue treatment technique consists (see, e.g. [4]) in solving (36) and taking 

x = x~ + a x  (37)  

as an improved value for the solution and in repeating the process as necessary with x ,  
substituted for the last value obtained in (37). 

Notice that in the reiterations it is not necessary to recalculate the vector p, and, thus, the 
number  of calculations per reiteration is low. 

4.5. Numerical example 

An example is taken to illustrate the influence of round-off  errors. (See [5, p.141].) Let 

[ H =  13 29 - 3 8  , z = 2 , 
- 1 7  - 38 50 - 3 

where H is ill-conditioned (condition number  = 1441) and the exact solution is: 

x ' =  ( 1 , - 3 , - 2 ) .  

This problem was solved in a Burroughs 6800, initializing the procedure with 

;'0 = I (3  x 3), x 0 = (0, 0, 0). 
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Basic algorithm 
Using the algori thm of (3)-(5), one gets, after initial iteration, 

0.99999999933- 4.72646206616 • 10 ~ ] 
xO) = - 3.00000058924 , r(1) = 6.98491930960 • 10-s  ] ,  

-2 .00000044805 9.31322574616 • 10 lo 

where the upper  index is to indicate the number  of iterations. 
Reiterating twice with the residue treatment,  there results: [ 0999999999 0] [00] 

x (3)= -2.99999999971 r {3}= 0.0 a ~ a " 

1.99999999985 0.0 

Here the zeros are to be unders tood as the computer  numerical  zeros. 
Whenever  it is possible to get the residue (r~) with a better accuracy, a significant improve-  

ment  occurs in the solution by residue treatment.  As an illustration for the previous example,  
taking 

f 4.72100509796 • 10 -8 ] 
','~1) = |7 .05895217834 10 -8 

L2.27373675443 10 10 

calculated with double precision operations, there results in just  one reiteration 

1.00000000000] 
v { 2 )  = - -  o u u u u v v v v u u v / ~ . ~ n ~ ~ / ,  ~ a  

- -  2.00000000000] 

which is the correct value under  the number  of considered digits (twelve). 
Notice that only the residue ~1) has to be calculated in double  precision. 

Factorized Potter's algorithm 
Using the algori thm of (24) (27) one gets, after one iteration, 

X ( 2 )  [ 1.00000000083- [ 2.32830643654" 10--10 ] 
a = --3.00000000432 ' r~ 1)= 9.31322574616 10 - l °  • 

-- 2.00000000300 0.0 

It is seen that  these results have a better accuracy than those obta ined with the basic 
algorithm. Reiterating once with the residue treatment,  there results: [ 099999999  01 [00] 

~av(2) = -2 .99999999501 , ra {2) = 0.0 . 
1.99999999671 0.0 

Where the zeros must  be unders tood again as the compute r  numerical  zeros. 
If the residue r~ (1) is calculated with double precision, the exact value is obta ined  in jus t  one 

reiteration. 
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5. Conclusions 

A determinis t ic  sequential  filtering a lgor i thm for the solut ion of  systems of  l inear  algebraic 
equat ions  was presented.  The  me thod  was obta ined  using results available in l inear  es t imat ion  
theory  and  was seen to coincide with the symmetr ic  upda te  version of A b a f f y  and  Spedicato.  

The me thod  seems to be a good al ternat ive in the solut ion of  pseudoinvers ion  and  quadra t i c  
p rogramming  problems.  Associated to an iterative scheme, it provides a tool for the solut ion of  
i l l -condi t ioned problems.  

The numerical  pe r fo rmance  of the factorized Pot ter ' s  version of  the m e t h o d  indicates  tha t  this 
fo rm of expressing the numerical  a lgor i thm has a potent ia l  wor th  of being fur ther  explored.  It 
seems to be a r ecommended  form to be used to a t t enua te  numer ica l  accuracy de te r io ra t ion  due 
to compute r  round-off .  
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