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Abstract — The problem of regulator design for stochastic linear
discrete-time systems by optimizing a quadratic index of performance
is considered. Loose separability is assumed and one-step-ahead
minimization of control magnitude and of controlled state deviation
from zero is imposed to obtain the control law. To determine the
weighting matrices in the index of performance, a state estimation
based scheme of analysis is proposed. With this approach these matrices

are taken as covariance matrices, through the use, one step ahead, of °

the information about allowed control magnitude and possible and
desirable state deviation from zero. Convergence of the proposed
regulator is analysed also using a state estimation equivalent problem
approach. Complete observability and complete controllability are
shown to guarantee the existence of a sequence of stabilizing control
values, which can be estimated by the adopted optimization design
approach. The structure of the resulting control law depends only on
past and present knowledge of system dynamics, making the proposed
solution suitable for applications where adaptive control is necessary.
Results obtained in one case of satellite attitude control are discussed.

1 — INTRODUCTION

In the usual LQG solution, the resulting controller depends
on knowledge of future system dynamics to be implemented
(e.g. Bryson and Ho, 1969). This is a serious limitation when
system modelled dynamics is only a local approximation and
adaptive control schemes are necessary.

In this paper, the design of a stochastic linear regulator is
proposed for the case of linear discrete-time systems according
to a strategy that depends only on past and present

information about the dynamic system. This is done by (i)
using an optimization scheme as in the LQG solution, but
adopting an index of performance that only includes
one-step-ahead minimization of control and state deviations
from zero; and (ii) looking at the weighting matrices present in
the index of performance as covariance matrices, and using a
state estimation based scheme of analysis to determine these
matrices.

To analyse convergence of the proposed solution, the
problem of existence and estimation of a sequence of
stabilizing control values is also posed as an equivalent
estimation problem. It is the shown that: the properties of
cbservability and controllability of the original control
problem imply the existence of a stabilizing sequence; and
that this sequence can be estimated by the proposed
optimization scheme of design.

As expected, the expression of the control law gain' is
similar to that of the LQG solution. The only difference is in
the way that the state weighting matrix is defined. As a
consequence of this, one gets a regulator for which complete
separability (e.g. Jacobs, 1981) does not hold, since the

~ control gain results dependent on state uncertainty.

The results presented here come after some previous.
heuristic efforts to use a similar strategy in the design of
adaptive controllers applied to ship and satellite control
(Rios-Neto and Cruz, 1985; Ferreira, Rios-Neto and
Venkataraman, 1985). As a matter of fact they were
developed looking for the establishment of a theoretical basis
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for the heuristic results used in those applications.

“In the sections ahead the paper is organized as follows. In
section 2, the problem of controlling a linear discrete dynamic
system is formulated to introduce the notation and to
establish the basic assumptions. In section 3, the proposed
solution is presented. In section 4, it is analysed from the
point of view of convergence. Test results obtained in one case
of satellite attitude control is discussed in section 5. Finally, in
section 6 the conclusions are presented.

2 — PROBLEM FORMULATION

The problem is that of controlling a linear discrete-time
dynamic system for which noise corrupted observations are
given at each sample time, i=0, 1, 2, ...:

x(i+1) = ¢ (i+1) x (i) +TTi)u (i) +w(i)

y (i)=H(i)x(i)+vli), €))

where x(i) is the nx1 state vector; u(i) the rx1 control vector;
y(i) the mx1 observation vector; and v(i), w(i), x(0) are zero
mean Gaussian vectors, with compatible dimensions, such that
forij=0,1,2,...:

Ev (id)w' (j1]=0,E[x (0 w'(i)]=
=0,E[x (0)v' (i)]=0o,

E[x (0) x' (0)]=P(0)>0,E[v(i)viijl]=

=R(i)bij,

Elw (i)w' (j)]=a(i) ij,

where E [.] indicates the expected value of its argument, and
ij is the delta of Kronecker.

The system of Equations (1) is assumed to be 'completely
observable and completely controllable. The objective is to
control the state x(i) towards zero as time increases. That is,
one looks for a control strategy that stabilizes the system,
leading to a regulator type solution.

To realize this objective, in the next section a procedure
will be proposed using a linear state feedback control law,
where only a loose separation (e.g. Jacobs, 1981) holds. It will
then be necessary to define a controlled state as:

x (i+1) =(¢li+1,0)-TGrc(inxi)
= (pli+1,i) — T ¢ () (xi) -
— K(i) (HG)E ) —v(i)), )
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where X(i) is the Kalman filtering state estimate after
measurement y(i) is processed (e.g. Jazwinski, 1970); K(i) is
the Kalman gain; C(i) is the linear state feedback control law
gain; e (i)=x (i)=x(i); x (0) = N(0;X(0)). The
controlled states constitute a stochastic zero mean Gaussian
sequence with second order moments given by (Bryson and
Ho, 1969):

XGi+1)=(¢ti+1, D-TCirctiN(X(i)+P(i)=
—PCi)pli+1,i)—
Ceirctint, 3)

_ A _ _ = A — —
where X ()= E [x ()X "()]; P ()= E[e (e Hi)];
A & -
P ()= E[(x(i) — x(i)) (x(i) — x(i']; and C(—1)=

=0,X (0)=P (0).

3 — PROPOSED SCHEME

To determine a regulator type of control law for the
problem of Equations (2), one ends up solving a deterministic
optimization problem in the proposed scheme. At each time
t; , uli) is determined as the value that minimizes the index
of performance:

3= 1720 ™ 1 1B 1 Jul i)+

i ~ ~ B
P =X st e DEPYG =X G s 1)) (@)

subject to the dynamic constraint

x(ti+1)=¢ (i+1,x(i)+Tirutiy, 5)

“where X(i) is known and given by the realization coming out

of the Kalman filter state estimate after processing the
observed value of y(i), at t; ; B (i) >0 is given and
chosen according to the bounds within which u(i) is
constrained; - xPY(i+1) is given and previously
determined to guide the predicted state towards a desired
contraction of state magnitude at tj+q. ;and s (i+1) >0 is
given and previously determined so as to condition a
realization of . (xP9(i+1)— X(i+1)) that is within
bounds that are both possible and desirable in terms of the
objective of the regulator being designed. .

The determination of s (i+1) and %xP9(i+1) is done
in such a way as to include and mix two types of information.
In a sense that will be made clear in what follows, one first




considers a predicted and possible distribution for X (i + 1)
and, second, imposes a desired contraction on the state
magnitude, at t;,; . This can be done as shown in the

following three steps:

First step: A possible and predicted controlled state can be
defined as being virtually given by:

XPlhsn=¢tis1, 0xi)=-TCircti—1D&(i) (6)

This is the controlled state that results when the matrix
C(i) of the control in Equation (2) is considered with one
sample interval lag. Thus, xP(i+1)
controlled state that can be reached. It can be viewed not as a

is certainly a possible

particular realization by as a random variable out of a
stochastic process, which from Equation (1) and the
properties of X(i) is certainly zero mean and Gaussian (Bryson
and Ho, 1969). In this sense, a possible predicted dispersion
for X (i+1) results:

XPU 1) =(pli+1, 0=TCircti—1(Xi)+

cPLi)=P(i))

gt -Tricti-n )
=P, —p,. —pt

where XP(i+1)AE[x"i+1)x® (i+1)] and the

other variables are as already defined in Equation (3). One can
then look for a strategy that leads to an occurred value of

x(i+1) as a convenient outcome of the Gaussian random
variable X P (i + 1) , where:
xPli+n=nN0:XPl+1)) ®)

Second step: A desired response at ti+1-  for the system
under control can be viewed and defined as those realizations
of xP(i+1) which are sufficiently close to zero to
guarantee the objective of controlled state magnitude
contraction. In a virtual sense, it is possible to consider a
sensor with the capacity of directly observing the state
P+
imagine that one is observing, with an imposed accuracy, a
realization of xP(i+ 1) that satisfies the condition of
being a desired response. This situation can be formally

expressed by:
v+ =xPlis ) +vdtie ©)

where y9(i+1) s chosen to constitute the virtually
observed desired response, at  ti+1
vai+ ) =N, R+ 1) ,with B9 +1) assumed

. Still in a virtual sense, it is also possible to -

diagonal, with variances properly chosen to characterize
virtual sensor errors. The accuracy of the sensors is chosen
such as to guarantee that, with a very high probability, the
xP(i+1) in correspondence with ;d(i +1) is within the
region of a desired response.

Third step: Combining the a priori information of Equation
(8) with the observation of Equation (9) one can apply an
optimal Gauss-Markov linear estimator (e.g. Jazwinski, 1970)
to obtain an estimate, fp(i +1) , of a possible and
desirable state, among those attainable at t;,, . Together
with  XP(i+1) one also obtains the covariance matrix
PPi+1)  of the errors (xP (i+1)—xP(i+1)) .The
second term of the Performance Index (4) is then compietely
defined if one chooses:

*PAG v 1) ARPGi«1),Sli+1)=(RP (141" (10)
where in the first equation xP9(i + 1) is to be understood

as a realization of xP(i + 1) that results when a chosen

y9(i+1) - sufficiently close to zero is processed; and
s (i+1) , in the second equation, is in correspondence with
achosen B9(i+1) thatleadsto (x Pli+1)—v9¢i+1))

within bounds that guarantee the objective of controlled state
. From the expressions of the
results as:

contraction at
linear estimator,

ti+q
S (i+1)

sti+ =R +1)T + (XP(i+1n?

@an
For the particular situation where the y9(i+1) s
chosen to be zero, it results:
%P+ 1)=xPli+1)=0. (12)
For this particular situation, the controller that results

from the minimization of the Index (4), subject to the
constraint of Equation (5), is as follows:

uli)==clilxli) (13)
ctir=(ist+ ) + 8N
TCtiysti+ 1)¢li+1,10)
=g )P T (T iyes i+ 1))
pli+1,i) (14)
where, except for the meaning given to S (i+1) , the

expression for C(i) is the same as that for the optimal
regulator (e.g. Bryson and Ho, 1969).
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4 — CONVERGENCE ANALYSIS

By construction, consider the following virtual estimation
problem, which is related to but not to be confused with that
of Equations (1):

Xti+1)=¢6(+1,i)x )+ Dliduti) +wii) (15)
YU+ 1) =HE+ DX+ 1) +V(i+1) (16)

where X (i +1) is the controlled state (see Equation (5),
substituting the expression for  X(i)
Kalman filter when it is applied to problem of Equation (1);
w (i) issuch that

Gli+1, %I =¢li+1,Dx (i) +wl(i)
the observability of System (1) converges to a white noise
having the same distribution as Gli+1, DK (ivii)
(Kailath,1968), when the Kalman filter is applied to the
problem of Equations (1); Hi+1) 4 s ; and
vii+1)4 N0, s! (i+1)), a white noise taken as

, as given by the

and which from

independent of W (i) , wuli) and Xx(i+1) , by
hypothesis and with S(i+1) as given by Equation (11).
The estimation problem of Equations {15) and (16) is

certainly observable, because H (i + 1) 1,.1f, at tj, uli)

and w(i) are considered as being the outcomes of
Gaussian white noise sequences, with u(i) =N(0,B=1(i)),
and  W(i)=N(0,¢(i+1, DK(IRIG (i+1, K (i)

(with dispersion usually negligible as compared to that of
uli)) , then from the controllability (u(i)) , and
observability (w(i)) of the original problem of Equations
(1) there results the controllability of the estimation problem
of Equations (15), (16). Thus convergence is guaranteed for

‘this estimation problem (e.g. Jazwinski, 1970), implying that

the estimate X (i + 1) , given by the Kalman filter, leads to a
residue:

r(i+1)=7(i+1)—>f(i+1) a17)

that necessarily converges to the associated innovation
process, reaching in the limit, the same distribution as that of
V(i +1) . This behavior of the residue T (i+1) means
that the objective of controlling the state of System (1), to
make it to approach zero, can be reached. The convergence
guarantees the existence of a sequence of occurred values of
uli)  that, together with the correspondent occurred values
of the noises «w (i)y and V(i+1) , reproduces the
observed ¥y (i + 1) . If the observed realizations are forced to
be the certainly possible outcomes y (i +1) =x Pd (i +1 ),
this sequence of u(i) satisfies the control objective posed for the
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system of Equation (1). Since X(i) is known and considering the
uncertainties imposed by w (i +1) and v (i + 1) the best
way to recover this sequence of the controls u (i) is to solve
the following parameter estimation problem:

0 =uli)+&yli)

Y+1)—@ti+1, dx(i)=Tliuli) +V(i+1) (18)

resulted from the substitution of X (i +1) , as given by
Equation (5) (or, equivalently, by Equation (15)), in Equation
(16).

The solution of the estimation problem of Equation (18),
using a Gauss Markov optimal estimator, is formally equivalent
to that resulting from the minimization of the Index of
Performance (4) subject to the constraint of Equation (5).
Thus, the proposed controller should lead to the stabilization
of system of Equation (1).

where &, (i) A N(0,871(i)) ;and the second equation

5 — NUMERICAL TEST: BIAS MOMENTUM ATTITUDE
CONTROL SYSTEM

With the objective of illustrating the convergence behavior
of the proposed approach one example is numerically
simulated in what follows. It is related to satellite three axis
attitude control.

This case is based upon a model of double-gimbaled
momentum wheel given by Kaplan (1976) for the attitude
control of a geostationary satellite. In discrete-time form the
state model is as follows:

[ 1 0 1,21E-10 0,1 0 —5,0E-04
0 1 0 0 0,1 0
) —1,21E-10 © 1 50E—04 O 0,1
Gli+1,i)=
—7,28E—07 0 3,64E—09 1 0 —0,01
0 0 0 0 1 0
|—3,64E—09 0 -7,28-07 0,01 0 1
(0,255—05 0 —-8,33E—09
0 1,25E—05 0
8,33E—09 0 2,5E—07
| 8. ' 19
Fein 5,0E—05 0 -2 ,6E—07 (19)
0 2,5E—04 0
| 2,5E—-07 0 5,0E—05
H(i) =71 0 0 0 0 O
010 0 0 O
R(i) = diag(3,4E—09 ;3,4E-09)
Qi) = diag(1,73E—29 ; 1,09E—24 ; 1,756E—29 ;

6 90E—-27 ; 4,34E-22 ;7,01E—-27 )




where the state vector components are the roll, pitch and yaw
angles and their time rates.

The model above was derived based on a discretization time
interval of 0,1 s for a satellite with the following parameters
(Kaplan, 1976): '

Moments of inertia:

. = s 2
i1y =1, =2000 N.m.s

= 2
Iy 400 N.m.s

Nominal Wheel Momentum:
h,=200 N.m.s

Orbital Frequency:

w,=7,28E—05 rad/s

The satellite axes X, y and z are respectively in
correspondence with roll, pitch and yaw. The wheel axis
coincides with the v axis. :

The controller parameters and initial conditions were as
follows:

C(-1)=0

X(0) =P (0) = diag (3,4E—05 ;3,4E—05 ; 3,4E—05 :
3,4E—07 ;3,4E—07 ;3,4E—07 )

(20)
B(i)=diag (1 ;10 ;1)
=d,. _ . . L
R (i+1)=diag (ﬁj(.+1),1—1,2, .......... 6)
where:
ajijp(imﬂ if aj;ip(i+1)2>8i
Bilis1) = (1)
. —P,. 2
8]- if a,-xj (i+1) <&i
and
= =a =0,,1
a4=a5=a6=1
=&, =8,5E-08 (22)

81
83 5,0E—06
84

Il

&5=86= 3,4E-07

In order to avoid near singularity related problems, the
diagonal elements of the matrix XP(i + 1) were saturated
from below at levels ej(i=1,2.....6) .

The simulation results are shown in figure 1.

For the kind of application at hand and when comparedt to
the controller (based on classic frequency domain techniques)
used by Kaplan (1976), the controller exhibits a faster
response when subjected to perturbations in the initial
attitude angles, reaching afterwards a condition of satisfactory
error levels. The worse results in yaw were expected since this
state is not directly observed (see H(i) in Equation 14)).

In addition, tests were also carried out with a satellite
attitude control problem where only one thruster was
available for three-axis control. This was done using a model
given by Muller and Weber (1972). Results obtained in this
case were still satisfactory despite the fact of having a single
actuator, which characterizes an adverse situation.

6 — CONCLUSIONS

A regulator for stochastic discrete-time linear systems has
been proposed. It is a sequential state estimate feedback type
of controller. Its main feature is to have a control gain matrix
dependent only on past and present knowledge about system
dynamics and state estimate uncertainties.

The fact that knowledge of future system dynamics is not
needed to determine present control action is expected to
make this controller suitable for use 'in adaptive control
schemes. .

The approach of looking at the one-step-ahead
minimization of the control action and of the state deviation
from zero, as a formally equivalent estimation problem, has
allowed to interpret the weighting matrices involved as error
covariance matrices. This certainly facilitates the choice of
these matrices.

Since the control gain depends on state uncertainty,
complete separability does not hold. The implications of this
feature have to be better evaluated.

The results obtained in the numerical tests are encouraging
and here one should include those results obtained previously,
in a heuristic basis, in application to nonlinear and time
variant systems (Rios-Neto and Cruz, 1985; Ferreira,
Rios-Neto and Venkataramen, 1985). However the numerical
behavior of matrix %P (i + 1) (in Equation (11)) indicates
that further investigation is needed to find ways of preventing
the tendency it presents of getting nearly singular. In the cases
tested, saturating the matrix from bellow was enough, but one
should look at the results already available in state estimation
to try to infer better approaches to treat this problem.
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Fig. 1 — Simulation results for satellite threeaxis attitude control
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