The Journal of the Astronautical Sciences, Vol. 40, No. 4, October-December 1992, pp. 527-545

Effect of Force Model Errors on
Short-Term Circular Orbit
Estimations

Rama Rao Kondapalli' and Atair Rios Neto’

Abstract

The ephemerides of low-altitude artificial satellites generated by orbit propagation pro-
cedures are in general influenced by various types of disturbing force model errors. In the
case of the gravitational force, model errors are caused by the incorrect truncation of
gravity field as well as the errors in the included coefficients. In the case of atmospheric
drag, they are caused by the uncertainty in the model parameters involved. Considering
low-altitude circular orbits, this work aims at treating these two types of errors and de-
veloping a stochastic procedure to evaluate the order of magnitude of the accumulated
global error in short-term orbit propagations. For the geopotential function, the linear es-
timation methods are combined with the spectral representation of terrestrial gravitation,
and the statistical estimates of uncertainties in orbital elements are deduced in terms of
their covariances. For the atmospheric drag force errors, the drag parameters are consid-
ered to be stochastic quantities and the statistical estimates of uncertainties in orbital ele-
ments are obtained the same way as in the geopotential case. The theories in both the
cases are at first tested separately and then are combined and successfully applied to a
satellite with the orbital and structural configuration similar to that of the proposed first
Brazilian satellite.

Introduction

Low-altitude orbit propagation is one of the most important problems in the
analysis and control of artificial satellite missions. The accuracy of the results of
an orbit propagation process based on the special perturbation methods is very
much affected by the errors in the perturbation model used in the orbital system
dynamics and by the errors in the numerical procedure used for integrating the
dynamic system. Consequently, in order to generate reliable and reasonably good
data of the satellite ephemerides, it is necessary to evaluate the order of magni-
tude of the accumulated global error, owing to all these imperfections, in the pro-
cesses of orbit propagations.
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One of the main errors in the perturbation model is due to the complicated
form of the geopotential function. The terrestrial gravitational field, which is
nonspherical, is in general represented by an infinite series expansion of spheri-
cal harmonics. For practical purposes, the series is truncated depending on the
knowledge of the terms in series at that moment. The errors are then related to
the incomplete knowledge of the coefficients included and to the ignored part. In
general, the contribution due to the latter is smaller than that due to the former.
However, in the orbit propagations where a low-degree model is used, the coeffi-
cients included are usually well-known so as to ignore the errors caused by their
incorrectness, and the effect of errors due to omission, which are usually not
known, become more significant [1]. Orbit estimation in the presence of gravita-
tional anomalies has been the subject of various papers [2-7]. However, test cases
spreading over a considerably wide range of altitudes and detailed analyses are
lacking in most of these works. Besides this, some of these works are not aimed at
attaining procedures which can be combined automatically with the software of
guidance and control of dynamic systems where a stochastic approach is needed
so as to couple the modeling errors easily with the state estimate errors [8-9].
Taking into account only the geopotential function errors, Gersten et al. [2] de-
duced the statistical estimates of the uncertainties in orbital elements in terms of
their covariances considering the gravitational field as a statistical quantity [10]
and using linear estimation methods. As one of the main aims, this paper, based
upon the analytical expressions of Gersten et al. [2], applies the developed theory
to some simple problems of satellites in a varied range of altitudes, compares the
estimated errors with true errors and analyzes in detail the results.

The other significant error in orbit propagation procedures is due to the neces-
sity of stochastic modeling of atmospheric properties. The air density used in cal-
culating the drag force is a complicated function of altitude, longitude, latitude,
solar and geomagnetic activities, and time. Moreover, the drag coefficient is not
a well-determined parameter. In fact, these uncertainties complicate the trials to
obtain a coupled solution with drag in the problem of motion of artificial satel-
lites. All the same, there have been various papers treating the drag problem [11-
13]. However, either these works have objectives different from that of this paper
or the theories developed there are not appropriate for coupling with geopotential
theory. Choosing some of the principal drag parameters whose uncertainty af-
fects the accuracy in determining the drag force, another aim of this work is to
treat these parameters as stochastic quantities so that the statistical estimates of
uncertainties in orbital elements could be deduced in terms of their covariances
and to apply the theory developed here, in combination with the geopotential
theory, to a satellite with the orbital and structural configuration similar to that
of the proposed first Brazilian satellite.

Stochastic processes to estimate the numerical integration errors have been de-
veloped elsewhere: in the case of single step methods [14], and also in the case of
multistep methods [15]. Hence, this work is limited to treat only the errors in the
perturbation model, i.e. the errors due to Earth’s anomalous gravity and drag pa-
rameter uncertainty, in the case of short-term propagation of low altitude circular
orbits. However, all the three types of the errors, including even long-term propa-
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gations in the case of numerical integration errors, were dealt with in the original
work [16], which is a Ph.D. dissertation, on which this paper is based on, and an
abridged version of this complete thesis work can be found elsewhere [17].

Earth’s Anomalous Gravity

The stochastic differential equation which describes a non-linear dynamic sys-
tem characterizing the orbit estimation problem may be written as [8]:

X(1) = £(X(1), 1) + G()Au(t) =1, (1)

where X(?) is the orbit state vector, G(¢) is the control matrix and Au(?) is a zero
mean Gaussian process. The initial estimate X(#,) is also supposed to have a
Gaussian distribution with mean X(#,) and covariance matrix P(fo).

Let X(¢) be a reference trajectory with given X(#,), which satisfies the equation,

X(t) = £X(1),1) t=1t,
Now defining AX(¢) as a deviation from the nominal trajectory, i.e.,
AX(t) & X(1) — X(2)

and assuming that these deviations are small in the quadratic mean sense, one
gets an approximate linear equation as:

AX(t) = F(1, X(t:))AX(t) + G(t)Au(r) ()
where
F(t,X(t0)) = [——aﬁ(?;_)’ t)]

which is a partial derivative matrix evaluated on the nominal trajectory.
The solution of the equation (2) is given by:

AX(f) = (1, to)AX(to) + f ' 6(, )G (r)Au(r) dr 3)

where ¢(t, to) is the state transition matrix which satisfies the equation,

$(t1,10) = F(t, X(t0)$(t, 10), (1o, 10) = 1

where ] is an identity matrix.

Since Au(t) is assumed to be a zero-mean Gaussian process, it can easily be
seen from equation (3), by taking the expectance E{AX(¢)}, that AX(¢) is an un-
biased process. Using this fact, the general expression of the covariance function
of AX(f) can be derived as:

COV{AX(F)} = E{AXAX"}
= ¢(t, to)E{AX(20) AX (o)} (2, t0)

+ [ [ 6. nG@EM@ M @G @ drdn @)

fo Yo
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where 7and 7 are dummy variables. The cross terms have been cancelled here as
the errors in the initial state are not correlated with errors in the perturbation
model considered in subsequent Propagation. In the equation (4), the first term
on the right hand side of the equation is the familiar form of simple propagation
of covariance matrix and the second term is an additive deweighting matrix which
takes into account the umodeled part of the geopotential [18].

Orbital Elements and the Equations of Motion

For the description of the orbit (Fig. 1), the set {r,v,B, i, 0, ¢} of spherical
elements [19], which is simple and useful even in very general cases [7] is chosen
here. Here r is the radial distance between the satellite and the Earth’s center,
v is the satellite velocity, 8 is the angle between the satellite radius vector and the
velocity vector, i is the orbital inclination, Q is the longitude of ascending node
and { is the angle between the maximum declination point and the instantaneous
position of the satellite (measured in the positive direction of the satellite motion
in orbital plane).

Considering the Earth as a uniform sphere without atmosphere, the equations
of motion in the spherical elements chosen above, after substituting ¢ by ¢{ as the
independent variable so as to simplify the integration process, can be written as
(see [2] or for detailed derivation [16]):

FIG. 1. Definition of the Elements for Describing the Orbit.
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r=rcotp
v = —[GM/(rv)] cos B
B = [GM/(rv*)] — 1

i'=0
=0
t' = (r/v) sin B %)

where prime indicates the derivative with respect to {.

It is known that in the absence of a disturbing function, all the orbits are Kep-
lerian orbits. Introducing here the elements ro, vy, Bo, io, o and t, as the Kep-
lerian orbit elements, one defines:

r=ry+ Ar

v=y; + Av

B=Bo+ AB

i =1+ Ai

Q=0+ AQ

t =t + At (6)

where Ar, Av, AB, Ai, AQ), At are the variations in the Keplerian orbital elements
because of perturbations. Considering circular orbits, one can observe here that
Bo = 7m/2 and r,vs = GM, where G is the universal gravitational constant and M
is the mass of the Earth. The differential equations for these variations in the
orbital elements are given by (see [2] or for detailed derivation [16]):

(Ar)' = —r/AB

(Av)' = voAB

(AB) = —Ar/ro — 2Av/vg

(Ai) =0

aQ)y =0

(At) = Arfvy — roAv/vg (7)

Now one considers three mutually perpendicular components R, S and W of
perturbing acceleration, R in the direction of the radius vector, S perpendicular
to R in the orbital plane (positive in the direction of increasing longitude), and W
perpendicular to the orbital plane. Based on the equations of Gauss, the inclusion
of the disturbing function transforms the equations of motion (7) into the follow-
ing set of equations (see [2] or for detailed derivation [16]:
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(Ar)" = —rAB

(Av)' = voAB + (ro/vo)S

(AB) = —Arfro — 2Avfvy — (ro/v3)R

(Ai)' = —(ro sin (W

(AQ)' = [ro cos ¢/(v§ sin i)]W

(At) = Arfvy — (roAv)/v§ — [r§ cos £ cos if(v§ sin i)]W (8)

Identification and Evaluation of the Terms in the Covariance Function

It can easily be seen that the equations (8) are equivalent to the matrix equa-
tion (2) except that the independent variable in the former is ¢ instead of t. Com-
paring these two equations, one obtains:

Ar
A
iR
AX = i Au=1|S (9a)
AQ w
| At |
[0 0 —r, 0 0 0]
0 0 v 00 0
| =lro =2/vo 0 0 0 O
= 0 0 0 000 (ob)
0 0 0 000
i 1/V0 —r()/V(% 0 0 0 0_

Taking { as the independent variable in the place of ¢, the covariance matrix of
uncertainties in the orbital elements, given by the equation (4), may be written as:

COVIAX(O)} = (¢, Lo)P(Lo)d" (&, Lo)
{ ¢
+ L L (¢ 1)G(1)E{Au(r) Au'(m)}G ' (m)@"({, m) drdn  (10)

The transition matrix ¢(¢, ) within the double integral of the equation (10) can
be obtained directly from the transition matrix equation, with matrix F given as
in the expression (9b). The matrices ¢(¢, 7) and G(7) of the equation (10) can be
expressed as:

2 —c(2) 2C4{[1 — c(2)] —ros(2) 000

Cole(z) — 1] 2c(z) — 1 vos(2) 0 0O

_ —C5s(2) —C4s(2) c(2) 0 0O
o) = 0 0 0 100
0 0 0 010

| Cs[3z — 2s(z)] Co[3z —4s(2)] —2Ci[1 —c(z)] 0 0 1

(11a)
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0 0 —Cs 0 0 0
G(m)=0 ¢, 0 0 0 0 (11b)
0 0 0 —=Ces(r) Cec(r)/s(i) —CiCec(r)c(i)/s(i)

where z = { — 1; ¢(-) = cos(:); s(-) = sin(:); C; = ro/vo; C2 = vo/ro; C3 = 1/ro;
Cs = 2/vo; Cs = 1/v; Cs = Cy/vo.

Gravity Error Covariance

Let Au(¢) be a vector of random errors in gravity, with Gaussian distribution,
given by:

AuR(t)
Au(t) = | Aus(r) (12)
Au W(t)

where subscripts R, S and W denote the radial, transversal and normal directions,
respectively. The orthogonal properties of spherical harmonics assure that the
radial, transversal and normal components of the errors in gravity are not cor-
related among themselves [7]. Now, one defines ¢ as an angular distance (central
angle) of an arbitrary point P'(6, X) with respect to a fixed point P(f, A) on the
surface of a sphere of radius ry as shown in Fig. 2, where 6 and 6’ are the polar
distances, and A and X are the longitudes of P and P, respectively. Extending the
results of Kaula [10] to the altitudes of satellites, the diagonal function of auto-
covariances of the errors in modeling gravity on a sphere of arbitrary radius r is

NORTH POLE

EQUATOR

FIG. 2. Definition of Angle ¢ between P and P' on a Spherical Surface.
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given by ([2] and [16]):

CG@w) 0 0
C() = E{Au(n)Au’(m)} = | 0 Cs(¥) 0 (13)
0 0 Cw(y)
where
caw - 3, (21) (B2 s e -y
Cs(yp) = gz ;1((’1le1))2 (?) ' o; {Pn(cos Y(r — 7)) - i (C((;S f(;-); ’fl))}

(14)

Here R is the Earth’s equatorial radius, P, and P? are, respectively, Legendre’s
polynomials and associated functions. The quantity o7 is called the degree vari-
ance which is defined as [20]:

o= 2 @i + bln) (15)
m=0
where @, and b,,, are the geopotential coefficients which are ignored in the in-
tegration of ephemerides. In order to treat the errors in the geopotential coeffi-
cients used in the ephemerides integration, a different kind of degree variance, as
given by Wright [6], can be defined and included in the equation (14). However,
only the omission errors are considered here since for gravity anomalies, the
omission error for low-degree field is large, and, as explained in other sections of
this paper, the earth model considered here is of low degree.
Having deduced the terms of the integrand in equation (10) analytically, the
evaluation of the covariance integral, either analytically or numerically, is a
straightforward process.

Drag Parameter Uncertainty

The atmospheric rotation is variable, not well-known and its effect on atmo-
spheric drag is usually small. Hence, making some approximations in treating the
atmospheric rotation, the general expression for drag acceleration can be written
as ([21] and [22)):

D = —pp[Cp A/(2m)|Fpvv (16)

where pp is the local air density, Cp is the drag coefficient, A4 is the cross-sectional
area of the satellite, F, is a term which represents atmospheric rotation, v is the
satellite inertial velocity and m is the mass of the spacecraft. A precise determi-
nation of D is hindered by the uncertainties in Pp, by the approximations in the
ballistic coefficient B (= Cp A/(2m)) and by the time variance of the factor F D-
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Writing the differential equation of the dynamic system as:
X(t) = f(X,lll,t) + g(X,llz, t)

where the function f contains the gravitational potential terms, u;, and the func-
tion g contains the drag terms u,, and defining two zero mean Gaussian processes,

Alll = u; — l_ll
Al.l2= u; — l_lz

where the values with overbars are nominal values, one will have:

of ag
AX = AX + —Au; + —=
<ax aX) du IA ' o A“Z an

The solution of the equation (17) is given by:
AX(r) = ¢(t,t0)AX (t0) + f'qb(t, 7)G(T)Auy (1) dr + ftcb(t, 7)H(7)Au,(7) dr
(18)

where
X=X
u; = l_lz

A O

6u1

X=)_( Héa_g
u; = allz

and ¢(¢, o) is the state transition matrix which satisfies the equation,

d(t, t0) = F(t,X(to))p(t, t0),  blto,t0) = I
with

of og
F(t, X(t = e
(o X(0)) = 7x * 5x
The covariance matrix of uncertainties in the orbital elements, AX(¢), is then
given by:

COV {AX(1)} = ¢(t, 10)E{AX (10)AX(t0)}o" (1, t0)

+ [ [ 66nG@ERu A ImG e 6 m dr dn

fo Yo

+ [ [ ¢ HEOE @ Mm@ nydrdn (19)
fo “to
ignoring the cross-terms on the basis of the hypothesis that the initial state errors,
the errors in geopotential model and the errors in drag parameters are not corre-
lated among themselves.

The second and third terms on the right hand side of the expression (19) are
called additive deweighting matrices which take into account the part of the geo-
potential function which was not modeled (same as the term of the equation (4)
but for a slight difference in the transition matrix) and the uncertainties in drag
parameters, respectively. The detailed deduction of equation (19) and the resolu-
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tion of its terms are clearly explained elsewhere [16]. Concisely, writing the dy-
namic equations of motion in terms of the same spherical set used in the case of
gravitational anomaly, the system matrix F in this case of combining atmospheric
drag with geopotential, can be seen to be [16]:

[0 0 ~ro 0 0 0]
_CVOC(io) _CrQC(ig) Vo CrUVOS(iQ) 00
_C3 _C4 —Cr(](l = C(lo)) 0 00
F =
0 0 0 o oo| @@
0 0 0 0 00
L Cs —Cs 0 0 0 0]

where C = ppCp(A/m)Fp, and c(:), s(-) and C; (i = 3,4,5,6) are as defined in
the equations (11).

The problem of finding the corresponding transition matrix can then be solved
analytically by using the methods of homogeneous and non-homogeneous linear
systems of equations.

Now, in developing the covariance matrix of errors in drag parameters,
E{Au,(7)Auj(n)}, defining,

Pp — Po
Auw,=| B - B (21)
Fp— Fp

the uncertainties in pp, B and Fp are modelled by zero-mean random variables
with Gaussian distributions whose standard deviations are such that

30’[ = &

where ¢; (i = 1,2,3), are the orders of magnitude of these errors.
Thus, the uncertainties in these parameters are modelled by random variables
with statistical properties defined as:

Efe,} =0; E{el} = of =}/9
E{ez} = 0; E{el} = o} = e%/9
Efer} = 0;  E{e}} = of = £3/9

One will then have:

g2 0 0
E{Au,Aul} =E{0 &} 0
0 0 &2

In the case of pp, the order of magnitude of its error, &;, is obtained by com-
paring the observed solar activity indices with the indices predicted by NASA
Marshall Space Flight Center [23]. Considering these values for the period be-
tween May 1981 and September 1986, which covers maximum, medium and mini-
mum solar activity, corresponding exospheric temperature values and density
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values are calculated using the density model CIRA-1972 [24], and the compari-
son estimates the order of magnitude of the error in density to be 107" kg/m’.
In the case of Fp, the expression is given by [22]

r 2
Fp=1|1--2wrcosip

Vp

where r, and v, represent the values of position and velocity at perigee and wr
represents the angular velocity of the atmosphere. Here, the uncertainty in Fp is
mainly due to wr. It can reasonably be assumed that the mean rotation rate of the
atmosphere, being equal to Earth’s rotation rate at the altitude of 200 km, in-
creases by 30% at the altitude of 250 km and then decreases to 80% the Earth’s
rotation rate at the altitude of 600 km [25]. With this, the order of magnitude of
the uncertainty in the parameter Fp may be estimated to be 0.01.

The order of magnitude of the error in the ballistic coefficient is calculated
based on the given configuration of the satellite in the next section.

Finally, the double integrals appearing in the covariance matrix expression (19)
are evaluated numerically, whose details are given in the next section.

Results and Discussion

In the case of estimating errors in modeling the gravitational function, three
test problems have been chosen. The orbits considered are circular with an incli-
nation of 25° and altitudes of 400, 600 and 800 km. The basic idea behind the se-
lection of these test problems is to have results applicable to planned future
Brazilian satellites which will have low circular orbits.

As the final aim is to combine the geopotential theory with that of drag, and as
the double integral corresponding to drag in the expression (19) has to be solved
numerically, the double integral corresponding to gravitational function also has
been evaluated here numerically. For this evaluation, tests have been made with
various quadratures such as QUANCS, an automatic adaptive routine based on
the 8-panel Newton-cotes rule [26], Gauss-Patterson quadrature [27], and, finally
a composite formula of Simpson [28] has been chosen after analyzing the process-
ing time and the numerical errors involved in all the quadratures considered. At
the initial point of orbit propagation, it is assumed that there are no orbit errors;
and the integration is done in one orbit.

For comparison purposes, a true error has been generated by using a numeri-
cal generator [29] which integrates the perturbed equations of motion using a
predictor-corrector of order which goes up to 12. Here, a geopotential model
complete to degree and order 30 was considered to be the validation model and a
model complete to degree and order 6 was considered to be the working model.
For computing the corresponding estimated error, to maintain the coherence, the
summations in equation (14) have been taken from 7 to 30. The comparisons of
estimated errors with true errors in all the three test cases are shown in Figs. 3
through 5. The dashed curves in all the figures represent the *o (standard devia-
tion) variation of the estimated error, and the continuous curve represents the
true error. The true error curve has a discontinuous look as the errors have been
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FIG. 3. Gravitational Function Modeling Error Comparison in the Case of a Circular Orbit of
400 km. The Solid Line is the True Error and the Dashed Lines are the Estimated Errors.

calculated at discrete points. Analyzing the Figs. 3 to 5, it can be seen that in all
the cases, the error estimates are good and conservative.

Now in the case of drag parameter uncertainty, a hypothetical satellite in a cir-
cular orbit of 700 km with geometrical structure similar to the first Brazilian
satellite was chosen. As the key note of this work is only to have a preliminary
evaluation of the theory developed, the inclination of the orbit has been chosen to
be 1° so that the system matrix F given in equation (20) could be approximated to
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FIG. 4. Gravitational Function Modeling Error Comparison in the Case of a Circular Orbit of
600 km. The Solid Line is the True Error and the Dashed Lines are the Estimated Errors.

the system matrix in the case of geopotential alone, for which the transition ma-
trix is available analytically.

For the given satellite, after calculating the most realistic drag coefficient [30]
and after consulting other data of the satellite, the uncertainty in the parameter B
is found to be the order of 107> m?/kg [16]. The uncertainty in the other two pa-
rameters was already computed as explained in the previous section.

Having computed all the necessary parameters, to figure out the true error due
to drag parameter uncertainty, the orbit of the satellite has been integrated in one
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FIG. 5. Gravitational Function Modeling Error Comparison in the Case of a Circular Orbit of
800 km. The Solid Line is the True Error and the Dashed Lines are the Estimated Errors.

revolution, once with the nominal values of pp, B and Fp and then with the most
realistic values of these parameters, and the difference has been taken as the true
error. In both the cases, the geopotential model used was the same.

For computing the corresponding estimated error, the double integral corre-
sponding to the drag parameter uncertainty in equation (19) is evaluated numeri-
cally by applying the composite formula of Simpson used in the case of the
geopotential.

The comparison of the estimated errors with true errors is shown in Fig. 6.
The results in the case of the elements i and 0 are not shown because the error



Effect of Force Model Errors on Short-Term Circular Orbit Estimations 541

- r (m)  JuagrA B (deg)
BOTTT T[T T T T[T T T T[T 77T _IIII'II’I’l,fbd‘I\IIIIII
- 4"--‘5 7 5— I’ “ 1
U5 — b —] 15— ¢ N =
o *°f 17, W I T
S 000 9 S of & =]
£ 18P
- - - (Y ” ~
Ww._o 5} = W_ 5 ‘\\ S L
= — - . ’ —
Y
-0.30'1"|'“'|""“'"— _so—llllllll\l\49-l"llllllI—
0 25 50 75 100 0 25 50 75 100
TIME IN MINUTES TIME IN MINUTES
1073 v (m/s) t (s)
§[TTTT[TTT T[T T II[TTTT O30 TTTT T T T T[T I I [TrrIT
C P NC C n ]
w o .o o o5 o e
L , TR L - . -
& [ oeems iy i) C .- ]
8 o ==¢ M & 000l =
o = = g 1 @ - /]
w _,[ K ‘1 w_,.f ™ /7]
-3 AN 2 = ~0.I5— S PRARE
- N "I — San=’ -
_5_1||||111|||1-1-111|||—‘ _0.3011||l|1|||||11]1|11_
(o] 25 50 75 100 0 25 50 75 100
TIME IN MINUTES TIME IN MINUTES

FIG. 6. Drag Force Parameter Error Comparison in the Case of a Circular Orbit of 700 km.
The Solid Line is the True Error and the Dashed Lines are the Estimated Errors.

estimation theory was based upon a hypothesis that the effect of drag on these
elements is negligible. In all other elements for which the results are shown, the
estimated errors are very close to the true errors. Except in the case of r, the es-
timated errors are a little more conservative in the middle of the orbit but at the
end of the orbit they present a better behavior.

Now, to obtain the combined effect of the errors caused by Earth’s gravitational
anomaly and drag parameter uncertainty, at first, a geopotential model complete
to degree and order 4, and a drag model with mean values of drag parameters have
been taken to constitute a working perturbation model, and the integration has
been performed in one revolution. Then, a geopotential model complete to de-
gree and order 30, and a drag model with most realistic values of the parameters
chosen are supposed to form the validation or actual perturbation model, and the
integration has been performed the same way as in the case of working perturba-
tion model. The difference between these two results gave the true error. Then
the error estimate has been computed by evaluating the two double integrals of
equation (19), with summations in equation (14) going from 2 to 30 and using the
nominal mean values of drag parameters.

Here one should make a note of a subtlety involved in using a geopotential
model truncated to degree and order 4 for computing the true error, whereas
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it should have been only the principal term of the geopotential function. The rea-
son is that, according to Gersten et al. [2], the degree variances given in the
expression (15) were computed using the free-air anomalous gravity data and
so the degree variances for » = 2 and n = 4 do not include the principal parts of
the harmonics J, and J,. Hence, the summation from n = 2 through 30 in the
expression (14) correspond to an orbit propagation with good approximations of
J, and J,.

The results of this combined effect are shown in Fig. 7. It is needless to say
that the estimated errors are reasonably good and conservative.
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FIG. 7. Comparison of the Errors due to the Combined Effect of Errors in the Disturbing
Forces. The Solid Line is the True Error and the Dashed Lines are the Estimated Errors.
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Conclusions and Proposals for Future Extensions

In general terms, one can conclusively note that the theory used to evaluate the
influence of the errors in modeling gravitational function and in drag force works
well and gives satisfactory results in the short-term propagations of low-altitude
circular orbits of artificial satellites. It can also be said that the spherical element
set used in this work is very much appropriate for this type of study.

Specifically, in the case of geopotential function modeling errors, the theory is
validated, as a preliminary evaluation, in various short-term circular orbit cases.
It should be noted that only short term (one period) propagations of the orbit
were considered not because of the shortcomings or limitations of the theory but
because of slow and not very sophisticated quadratures used in this work. An
analytical evaluation of the double integral would have made it possible to con-
sider a long-term propagation [2], but with the aim of combining the geopotential
theory with the drag theory, the evaluation has been done here numerically. In the
case of drag force errors, one can assert that the theory developed here is suitable
to be combined with the geopotential function theory.

In the case of modeling the errors due the Earth’s anomalous gravity, though
the basic expressions already exist [2, 10], this work showed an application of the
theory in various examples and provided an analysis by comparing the estimated
errors with the true errors, which has not been done before. Besides this, in the
case of modeling the errors due to the drag parameter uncertainty, in this work,
the theory has been developed, an application has been shown, the estimates are
compared with the true errors and the coupling with the geopotential theory has
been done. For complete derivation of the relating expressions, Kondapalli [16]
may be looked into.

As a future development, at first, a faster quadrature should be found so as to
validate the theory in long-term propagations in both geopotential and atmo-
spheric drag cases separately and also when coupled. The geopotential theory
may be tested in the case of some near-circular orbits following the guidelines
suggested by Wright [6] and necessary changes for similar orbits should be done
in atmospheric drag theory too. Some problems, where errors due also to the in-
correctness of coefficients included in the geopotential model are treated, may be
tested. The authors believe that this will need only a little more effort, hopefully.
However, one will have to grapple a little with the problem of extending the the-
ory to elliptical problems in the guidelines suggested by Giacaglia [7]. In drag
theory, a comparison should be made between estimating the ballistic coefficient
as a part of the state vector and calculating the drag model error taking into ac-
count the uncertainty in the ballistic coefficient, in order to study the relative er-
ror reduction in these cases. The case of attaining a general drag theory, though
not an impossible task, needs some long term research. To achieve the objective,
the methodology applied in geopotential theory should be tested in the case of
drag theory also for further extensions.
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