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Abstract

A recently developed nonlinear programming stochastic projection of the gradient-type technique is applied to get and test novel
procedures for tri-dimensional guidance and control of a satellite solid-fuel launch vehicle. Near optimal open-loop and low-
frequency closed-loop solutions are obtained by parametrization of the control history and by considering the satisfaction of
boundary constraints unless of specified random errors. Numerical simulations and tests show that the closed-loop solution can cope
with the typical model uncertainties and environmental perturbations. A non Standard situation of having a fourth stage with a free
burning time is tested. © 2000 Elsevier Science Ltd. Ali rights reserved.
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1. Introduction

Orbital injection usually requires the application of an
optimal guidance and control procedure in order to
maximize payload and accurately place it into the desired
orbit without violating mission constraints. The high
costs involved in satellite launching fully justify the high
research efforts and budgets in order to improve solution
methods in terms of optimization, ease of use and robust-
ness to environmental perturbations and modeling
errors.

Guidance and control procedures may be applied in
both an open or closed-loop fashion. Open-loop guid-
ance and control procedures apply a control history
found off-line prior to the flight. Works on this subject
determine the control history usually by solving a trajec-
tory optimization problem (Breakwell, 1959). A wide
variety of methods have been devised recently and ap-
plied to different purposes (Lu, 1993; Hargraves & Paris,
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1987; Betts & Huffman, 1991; Enright & Conway, 1992;
Burlirsch & Chudej, 1992; Betts, 1994; Tang & Conway,
1995; Seywald, 1993; Coverstone-Carroll & Williams,
1994; Sachs, Drexler & Stich (1991); Smania & Rios Neto
1988).

Closed-loop guidance and control procedures are con-
ceived to cope with uncertainties and perturbations ever
present during the flight. Great efforts have been devoted
to devising guidance and control procedures, fast enough
and reliable enough to be applied onboard the flying
vehicle. Research works include a broad range of ap-
proaches in which their complexities are strongly depen-
dent on the current onboard computer technology. The
majority consists of a trajectory optimization procedure
further simplified to meet the real time feasibility. Recent
works on this subject include the utilization of explicit
guidance (Sinha, Shrivastava, Bhat & Prabhu, 1989;
Vittal & Bhat, 1991), energy state methods (Corban,
Calise & Flandro, 1991), dynamic programming (Feeley
& Speyer, 1994), generalized projected gradient (Richard
& Christophe, 1995), finite element (Hodges, Calise,
Bless & Leung, 1992; Leung & Calise, 1994), hybrid
analytic/numerical approach (Leung & Calise, 1994),
neighboring extremais (da Silva, 1994), geometrical ap-
proach (Mease & van Buren, 1994), etc. Another emerg-
ent approach consists of application of parallel
processing techniques to speedup the overall trajectory
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optimization computation time (Betts & Huffman, 1991;
Psiaki & Park, 1992; Wirthman, Park & Vadali, 1995).

This paper presents the nrst application of a recently
developed stochastic gradient projection method to opti-
mal design and closed-loop guidance and control of
a launch vehicle trajectory. The version of the stochastic
gradient projection method used was proposed by Rios
Neto and Pinto (1987). The success of its application in
solving problems of spacecraft maneuvers (Prado & Rios
Neto, 1994; Rios Neto & Madeira, 1997) motivated its
application in guidance and control of launch vehicle.
A direct search method using this nonlinear program-
ming technique is implemented. The trajectory is divided
into a sequence of segments and the control history is
approximated by parametrized functions inside each tra-
jectory segment. The objective is to find a parametrized
control history to place the maximum satellite mass in
a low Earth orbit. A low frequency closed-loop guidance
and control procedure intended for onboard use is for-
mulated and tested.

A special feature of this method is the inclusion of the
acceptable errors on the constraints into the problem
resolution. Therefore, instead of searching a solution that
corresponds to a definite value for every constraint com-
ponent, the method searches solutions that make each
constraint component to fali inside a given interval.

Simulations and tests are carried out for the satellite
launch vehicle (VLS) of the Brazilian Complete Space
Mission (MEC-B).

The following sections present a brief review underly-
ing the major features of the stochastic gradient projec-
tion method, the launch vehicle open-loop trajectory
optimization, and the closed-loop guidance and control
procedure.

where e' and ô] are given and fixed accuracy limits of
constraints satisfaction, defining the region within which
the errors are considered tolerable, and which can be
viewed as modeling the numerical zero for each con-
straint satisfaction.

2.2. Solution of the problem

In a typical iteration, one searches an approximate
solution for the first-order increment AY in the problem:

Minimize F(Y + AY)

subject to h(Y + AY) = ceh(Y) + £,

0,-(Y + AY) = fe(Y) + s,,

(4)

(5)

in which Y is a given initial guess or a point from the last
iteration; gi;(Y) > ò\, i = 1,2, ...,Ig, represent the set of
active constraints; O < a < l and O < /? < l are the
search step adjustment parameters chosen in order to
condition AY to be of first order of magnitude, i.e., for
a highly nonlinear constraint, the associated search step
parameter value should be closer to the unity; on the
other hand, for a fairly linear constraint, the associated
search step value may be selected closer to zero.

The left-hand sides of Eqs. (5) are replaced by lin-
earized approximations together with a stochastic inter-
pretation for the errors £ and <5;, leading to

(a - l)h(Y) =

G? -

+ £r,

(6)

2. Stochastic gradient projection method: a review

2.1. Statement of the problem

Consider the nonlinear programming problem stated
as

Minimize F(Y)

subject to h(Y) = e, g(Y) < ô,

(1)

(2)

in which Y is a n-dimensional vector of parameters to be
optimized; F, h, and g are real-valued functions of Y of
dimensions í,mh, and mg, respectively; E and ô the error
vectors, representing the acceptable accuracy on the con-
straints satisfaction, defined as

|e;|<4 i = í,2,...,mh,

\ó}\<ô'j, j = 1,2,...,m,, (3)

In Eqs. (6), the error vectors were converted into the
uniformly distributed unbiased noncorrelated random
errors s* and õ\, modeled as

E[£r£r ] = diag\_e2, i = 1,2,..., mh~\,

= diag{_dl i = l, 2,. . . ,
(7)

The condition stated by (4) is approximated by the fol-
lowing a priori information:

- yVFT(Y) = AY + ç, (8)

in which y is a nonnegative search step to be adjusted
such that the increment AY turns out to be of first order
of magnitude; ti is a uniformly distributed unbiased ran-
dom vector modeling the a priori searching error in the
negative direction of the gradient VF(Y), given by

= P, (9)
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where P is taken to be diagonal, since no a priori
correlation is imposed among the errors in the gradient
components, and with variances adjusted by maximum
likelihood statistical criteria such as to nave the r\n to be of first order of magnitude as compared

to the second order of magnitude of errors er and ò\.
The nonlinear programming problem given by Eqs. (1)

and (2) hás been converted into the linearized problem of
Eqs. (8) and (6). The linearized problem, in turn, charac-
terizes a parameter linear estimation problem:

AY = AY + »/,

Z = MAY + V, (10)

in which Eq. (10) is equivalent respectively to Eqs. (8) and
(6), using a shorthand notation.

Adopting a criterion of linear, minimum variance
estimation, the optimal search increment can be deter-
mined using the Gauss-Markov-Kalman estimator
(Jazwinski, 1970).

AY = AY + K(Y - MAY),

P = P - KMP,

K = PMT(MPMT + R) (H)

in which R is a diagonal matrix, given by R = £[VVT],
and P is an approximation of the covariance matrix of
the errors in the estimated components of AY

PS£[(AY - AY)(AY - AY)T]. (12)

An alternative and numerically equivalent way of
finding the estimative of AY, given by the Gauss-
Markov-Kalman estimator, is to solve the deterministic
counterpart optimization problem

Minimize i{(AY - AY)TP~ \A\ AY)

+ (Y-MAY)TR~1(Y-MAY)}. (13)

Since constraints satisfaction is necessary for the solution
of the problem, the foregoing relation enables the estab-
lishment of a weighting relationship between P and R in
order to assure priority to constraint satisfaction over
minimizing the objective function.

2.3. Numerical implementation

The numerical implementation of this method is car-
ried out iteratively in a sequence of two phases, namely,
(i) phase of constraints acquisition, and (ii) the gradient
phase (Rios Neto & Pinto, 1987; Madeira, 1996). The
iterative process begins in the phase (i) where from a feas-
ible point a search airns to capture the equality con-
straints, including the inequality constraints that become

active during the search process. When the equality con-
straints satisfy the limits of tolerable error, a phase (ii)
begins to further reduce the objective function value. This
process is carried out by relaxing the order of magnitude
of error V (Eq. (10)) to allow priority for a non negligible
search step in the direction of the minimum. After com-
pleting the gradient phase, phase (i) is repeated in order
to reacquire the constraints within the limits of tolerable
error. This sequential process continues until the pre-
scribed convergence criterion is met.

The numerical algorithm implemented in this work is
based on the procedure proposed by Rios Neto and
Pinto (1987) and is summarized below.

(1) The search parameters a and /? in each step are
given by

l - a = l - 0 = s,

in which

s = Min{s;, i = 0,1,2,..., m,, + Ig},

s0 = l,

(14)

(15)

^Rk + m^, k=l,2,....Ig,qk$>l. (16)

(2) The dispersion q is determined using Eq. (10):

Z = M(AY + i/) + V = Z + Mi/ (17)

and

Z - Z = ez = Mi/. (18)

Assuming no cross correlation in ez components, and
evaluating their variances by using a maximum likeli-
hood criterion, results:

fjPjj = £[(ef)2], i=l,2,...,mh+Ie.

Let

Ê[(ef)2] =

Hence

= 3Ríqi.

(19)

(20)

(21)

In the application reported in this paper, the solution of
Eq. (21) was found using the following approximation
criterion:

PJJ = Max -f-, i = l, 2, ..., mh + Ig and Mtj * O,
l Mijtli

(22)

in which «,- is the number of for each row i of matrix M.
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(3) In each step, the search parameter y was found
using the approximation relation:

y = Min - 0. (23)

3. Launch vehicle open-Ioop trajectory optimization

3.1. Vehicle modeling and mission description

The satellite launch vehicle (VLS) is a conventional
nonlifting rocket propelled launch vehicle, composed of
four expendable solid-fuel stages. The flights of the first
and second stages are assumed to be carried out into the
lower atmosphere and the atmosphere effects are neglect-
ed for the flight of the third and fourth stages. The burn
out time of a given stage coincides with both the current
stage structure jettisoning and the ignition of the next
stage. A long coasting phase takes place between the
third and fourth stage flights.

The mission objective consists of inserting the max-
imum satellite mass into a circular orbit. The orbit is
required to have 750 km of height and an inclination
of -25°.

In order to assure the vehicle structural integrity,
a maximum aerodynamic loading is imposed

(24)qa - ^MAX < O

in which qaMAx = 4000 Pa rad.

3.2. Equations ofmotion

In the present approach the vehicle is treated as a point
mass model, and hence the rotary dynamics are not
accounted for. The governing equations are expressed in
a moving coordinate system (Madeira, 1996) with the
origin at the Earth's center (re = 6 378 145 m) and the
x-axis pointing toward the vehicle. The vehicle motion is
constrained to the xy-plane, y-axis points forward, and
the z-axis is perpendicular to the motion plane, thus
completing the right-handed coordinate system.

The equations of motion are then expressed as

l, =r = u,

X 2 =u = --- +
M

. Dx

sm aP cos ar ^ T7>

uv FT Dy
h — COS EXp COS «y - —-,

FT sin xy — Dz \n

Mv

í F-r sin «v — D z"
X, = 9 = -í ~ icos.

X6=<t>=--
r

Mv

FT sin ay — Dz

~Mv

Xl = M = - &

in which

FT = CvjS - AsPATM(h), PATM(h) =

(25)

a2(h)p(h)

y

M(í0) = Ms + ME + MP, Mach = —,
a

D(DX, Dy, \D\ ± , a). (26)

In Eq. (25), r, u and v are the vehicle radial distance, the
radial and tangential velocities; i/f, 9 and 4> are Euler
angles relating the moving coordinate system to a non-
rotating Earth-centered inertial system; they are named
node angle, inclination angle, and flight path angle, re-
spectively. FT and D are the vehicle thrust and the
aerodynamic drag; ap and ay are the control thrust
deflection angles in flight plane (pitch) and out of flight
plane (yaw); and n is the Earth's gravitational constant
(3.986012 x IO14 m3/s2).

In Eq. (26), Cv and /J are the stagewise constant
vacuum exhaust gás speed and the propellant mass rate,
respectively; As is the engine nozzle área, PATM is
the atmospheric pressure, h is the geometric altitude,
p is the air density, a is the speed of sound, and y
is the gás constant of air ( = 1.40); Ms, ME and MP

are payload/satellite mass, the vehicle structure mass,
and the propellant mass, respectively; Dx, Dy and Dz

are the aerodynamic drag components resolved into
the moving coordinate system; V is the total airspeed
and a is the angle of attack. The drag coefficient is
Mach number and angle of attack dependent and since
the problem deals with a nonlifting vehicle the aerody-
namic lift is not accounted for into the equation of
motion. The geometric altitude dependent functions
a and p are given by an analytical function (Duffek
& Shau, 1975) based on the US Standard Atmosphere
(Regan, 1984).

3.3. Statement of the problem

Trajectory optimization problem consists of finding
a control history UT(Í) = [aP,ay], t0 < t < tf, that mini-
mizes the objective function

sin (T F(x(íf),íf)= -x1(tf)= - (27)
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subjected to the final time equality constraints, i.e., the
specified circular orbit injection conditions

h(X(ff),íf) =
u(tf)

v(tf) -

d(tf) -

(28)

given ali the initial state components but X-,, since the
vehicle initial mass is not known at ali once the satellite
mass was not calculated yet; and subjected to the given
initial conditions

(29)

where Ms is the mass at final time, viz., the payload mass
to be injected into orbit, and the aerodynamic loading
inequality constraint is converted into an equality con-
straint. Let X8 be an additional state variable, such that

X. =
'qa. - qixMAX if qa. - gaMAX > O,

O if qa. - <?OÍMAX < O,

in which Xs(t0) = O, and let hs be an additional equality
constraint, such that

(30)

Hence, the additional equality constraint, to be met at
the final time, assures the inequality constraint will not
be violated along the whole vehicle flight trajectory.

3.4. Parametrization of control history

In order to parametrize the control history, the trajec-
tory is first divided into a sequence of segments, separ-
ated from each other by meshpoints. Every discontinuity
in state and control coincides with a meshpoint. Thus, for
each burning out time a meshpoint is assigned due to the
stage structure jettisoning.

Using a Rayleigh-Ritz method, the control history can
be approximated by an arbitrarily parametrized function
(Williamson, 1971)

u(í)su(a,0- (31)

Once the values of the parameter vector a are deter-
mined, u(a, t) depends only on time. Therefore, the con-
trol in each flight trajectory segment is approximated as
ares of a function that is usually taken to be a polynomial
(e.g. Williamson, 1971; Rios Neto & Ceballos, 1979;
Ceballos & Rios Neto, 1981; Ceballos, 1979). In this
paper, u(a, t) is approximated by linear functions, só that
the control history is determined by the parameters:

aí = [aPa,aPl,...,aPK], af = [aYo,aYí,...,aYJ,

where ap. and aY, are the pitch and yaw control values at
the ;'th meshpoint, and N is the number of flight trajec-
tory segments. The control for the (th trajectory segment
is then given by

MO = («P,., - «P,) ' + aPi,

(32)MO = («ri+1 - aYl) 7 '— + aYí,
ti+i — ti

in which f ; < í < í í+1 and í0 < ít < ••• < íjy = íf.

3.5. Problem solution

The equations of motion depend only on the para-
meter vectors ap and ay, the duration of coasting flight
íc, and on the satellite mass Ms. The trajectory optimiza-
tion solution problem consists of determining an opti-
mizable parameter array y, given by

that

Minimizes F(y)

subject to h(y) = s,

(33)

(34)

(35)

where F and h have already been defined in Eqs. (27), (28)
and (30).

The Jacobian matrix

needed in the linearized approximation (see Eq. (6)) is
given by

"dh X õh

W (36)

Since the constraint vector h does not depend explicitly
upon the optimizable parameter array y, the Jacobian
ôh/dy is a null matrix. Unlike

õh

which hás a straightforward analytical form, the
Jacobian

is calculated numerically using the central-difference
method (Gill, Murray & Wright, 1981).
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3.6. Open-loop trajectory optimization simulations

In what follows, results obtained for a typical MEC-B
(Brazilian Complete Space Mission) satellite mission,
from the Alcântara launch site, using a solid propelled
four stages launching vehicle, to place a satellite into
a 750 km height circular orbit of — 25° of inclination are
presented (Madeira, 1996).

With the aim of maximizing the satellite mass capabil-
ity, three different strategies have been implemented. In
the first strategy, a minimum number of parameters have
been used. The pitch and yaw steering controls vary
linearly from the current stage ignition till the burn out
time/stage structure jettison. After that, the controls
switch to another slope and só on. The second strategy is
similar to the first one, except that it assigns two straight
line segments for the control vector components in each
flight stage; and the third, most refined strategy, assigns
four straight-line segments for the control vector compo-
nents in each flight stage.

Even though the first strategy is the least refined one,
the results obtained and depicted in Fig. l and Table l
indicate it yields quite satisfactory results when com-
pared to an optimal multiple shooting solution to the
same problem (Zerlotti, 1990). Moreover, the second and

800000

Height
(m)

700000

• Multiple Shooting
-Stoch. Grad. Projsction

Time

third strategies add no further improvements on the
results compared to the first strategy. The height profiles
for the second and third strategies were not shown in
Fig. l since they are quite só close to the first one that
they overlap for almost the entire flight path. For the
three implemented near-optimal strategies, the control
profiles as well as state profiles are closely related to their
optimal counterpart (Madeira, 1996). However, the pro-
files of the aerodynamic states a (angle of attack) and qct
exhibit major differences compared to the optimal
counterparts. Such differences are due to the fact that at
the meshpoint times the control switches from one slope
to another (Madeira, 1996).

4. Launch vehicle closed-loop guidance and
control procedure

The solution of a trajectory optimization problem
gives a parameter array y (Eq. (33)). Under ideal flight
conditions, i.e., a flight in which the effects of model
uncertainties and environmental perturbations are negli-
gible, the use of y throughout the flight trajectory in an
open-loop fashion will lead to the satisfaction of the
condition:

< |£; (37)

Fig. 1. Open-loop solution height vs. time.

that is, each mission constraint h j will be satisfied with as
much accuracy Sj as our trajectory optimization proce-
dure performance allows.

However, for a real flight that is no longer true. Since
most of the parameters required for computing y are
subjected to uncertainties, and the environmental effects
tend to perturbate the vehicle's flight away from the
optimal nominal trajectory, an onboard in-flight updat-
ing of parameter array y is in order, otherwise unsuccess-
ful constraints satisfaction will result, leading to the
mission objectives fulfillment failure. Such an onboard
in-flight updating demands for a closed-loop guidance
and control procedure.

Since now one is concerned with an actual flight
mission, the vehicle initial mass is a known parameter
and hence the satellite mass too. The closed-loop guid-
ance and control problem does not account for the satel-
lite mass optimization. Hence, this problem does not
require the minimization of an objective function and the

Table l
Open-loop solution: constraints satisfaction and the resulting satellite mass

(m) h2 (m/s) h} (m/s) hí (deg) h, (Pa s) Ms (kg)

Stochastic
Gradient
Projection
Multiple shooting26

Ist strategy
2nd strategy
3rd strategy

- 5.0582E
- 6.6903E
- 4.4446E
± 5.E - 3

-3
_ 3

-5

- 7.0608E
- 2.4927E
- 7.1028E
± 5.E - 3

-6
-5
-8

-4.1137E
- 2.2198E
- 1.4814E
± 5.E - 3

-6
-5
-8

-2.7217E
1.8844E
5.4622E

—

-8 1.6739E
-8 4.5541E
-12 3.1555E

—

-7
-8
-9

182.9730
186.1121
185.7202
187.8955
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left-hand side of Eq. (8) is set equal to zero, leading to the
following a priori Information:

yo.d = ynew
(38)

where yold is the previously known part of the vector of
parameters, needed to be updated for the remaining part
of the flight control, and it is assumed that the vehicle
deviation takes place inside a suitable neighborhood of
the reference trajectory such that the new control history
ynew lies inside a region around the old control history
yold, bounded by the uniformly distributed unbiased
stochastic error vector t\. For the closed-loop guidance
and control problem the observation like equation for
constraint satisfaction is the same as Eq. (35) of the
trajectory optimization problem. However, for the sake
of real time operation feasibility, each control history
updating will be performed in a single iteration, implying
a equal to zero in Eq. (6).

The closed-loop guidance and control then consists of
updating the part left of control history yT = [aj,a£,tc]
at some prescribed time instants during the flight, solving
the filtering problem:

old _ n + r,, h(ynew) = 8. (39)

After linear perturbation this problem is converted into
a linear optimal filtering problem solved with the
Gauss-Markov-Kalman estimator (Eq. (11)) providing
the optimum correction increment Ay, leading to

ynew = yold + Ay. (40)

For the onboard in-flight control, the actual state
X(ik) at some assigned meshpoint time Tk (k= l, 2,. . . , L,
T0 = í0 ,T f = f f ) is not, to a lesser extent, equal to the
nominal reference state X*(it). The nominal reference
state was found earlier, by the off-line trajectory optim-
ization procedure and afterwards by the most recent
update pf the closed-loop guidance and control. The
actual state is externally supplied by some navigation
sensor output, e.g., GPS, INS, a combination GPS/INS,
etc. The stochastic gradient projection method takes the
information provided by the actual state X(tfc) as start-
point to update the control history which will actually be
used in the time interval (ik,xk+í}. The time meshpoints
assignment follows the same guidelines stated for par-
ametrization of control history.

At beginning of the flight (TO), the actual control his-
tory to be used until T! is

which hás been previously computed in the open loop
solution.

In order to simulate the real flight conditions, dynamic
model parameter uncertainties are artificially introduced

and Eq. (38) are numerically integrated. The perturbed
value of a parameter p j due to model typical uncertain-
ties Ap is defined as:

randj

in which

- l < randj < l

(42)

(43)

is an unbiased uniformly distributed random number.
It must be stressed that the calculation for updating

the control history y are performed using the unpert-
urbed parameters p j. The perturbed parameters p j are
used ad hoc to drift the vehicle away from the nominal
reference trajectory through the introduction of model
uncertainties in an attempt to simulate a real flight.
Therefore, in order to accomplish the filtering task, the
perturbed values are not known a priori, only their effects
are observed a posteriori.

Prior to the kth updating, the actual control history is

,,k- l rak- l „&- l „&- l ,(c- 1-iTy = Laj , a , - + i > • • • ) % ,íc J , T k _ 1 t ̂t <T f c ,

(44a)

in which t j < ijt-! < O + i - The actual state X*"1^*) is
found by taking the perturbed parameters pj and the
actual control history yk~ 1

integra ting them from 1^-
as initial condition.

If ik < 0 + i > then ajT1

component of y. Thus,

a)- '(T*) = (ajíí - a)- ̂

into the dynamic Eq. (38) and
1 to ik and taking X Í I ~ I (T A ; ^ I )

s the first actual vector

(45a)

and a) 1(rk) replaces a* HTÍI-I) mto Eq. (44a).
If, Tfc > 0+1 , then a^ may be dropped from the control

history, leading to

v - _y — j + i >

and thus

(44b)

0+2 ~~ 0+1

(45b)

replaces akj+l(i:k-í) into Eq. (44b).
Once the first actual vector component hás been suit-

ably updated for t = ik (Eq. (45)), the control history
(41) y * (Eq. (44)) is taken to be the a priori information

yodd (Eq. (39)) and, from an initial state X k ~ l ( t k ) , the
updated control history ynew = yk is next calculated using
the stochastic gradient projection method. The new con-
trol history y* will be the actual control history to be used
in the time interval ik < t < rk+1.
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4.1. Closed-loop solution simulation

The numerical simulations of the closed-loop guidance
and control procedure were performed using typical
parameter uncertainties for the MEC-B launch vehicle
(Madeira, 1996), as depicted in Table 2.

The control history updating was performed three
times during each booster phase and once during the
coasting phase (L = 13, number of meshpoints rk). This
approach leads approximately to one updating at every
20 s during the booster phases. Such a low updating
frequency is part of an endeavor to achieve real time
operation feasibility.

The real time operation will not be addressed. For the
purposes of this phase of exploratory study it is assumed
that closed-loop guidance and control procedure consists
of a reactive system operating under the hypothesis of
synchronous approach (Benveniste & Berry, 1991).

The synchronous approach hypothesis considers an
idealized system which produces its output synchronous-
ly with its input. Therefore, at time rk, when the kth
updating takes place, the actual state X(rfc) (input) is
determined and hence the new control history y* (output)
is synchronously found, then replacing at the same time
the old control history y k ~ l . In other words, it is assumed
that the elapsed time for computing yk is negligible and at
t = rk the actual control history switches from yk~1 to yk.

In this paper the numerical results for two case studies
are presented. The first case study considers the standard
MEC-B launch vehicle configuration. The second case
study considers the upper stage burning time as being
free.

4.1.1. Case study J: the standard case
The standard case considers the same launch vehicle

configuration used for open-loop trajectory optimization
and ali assumptions done up to this point remains still
applicable. Two realizations, named A and B, found in
tests (Madeira, 1996) to be representative of the range of
behavior due to typical perturbations were selected for
presentation.

The Fig. 2 illustrates the differences in the pitch and
yaw control histories for realizations A and B, respective-
ly, as compared to the open-loop control histories found
by the trajectory optimization procedure. Though the

entire left control history is calculated for every updating,
only the control history actually used is shown. During
the coasting phase, between the third and fourth stage
flights, there is no control action and therefore no control
history is shown. Table 3 shows the resulting orbit
characteristics.

40
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<*9)

35-

Multiple Shooting
Open-Loop

—•—Closed-Loop: RealizationA
—*—Closed-Loop: Realization B

Muttiple Shooting
Open-Loop

—•—Closed-Loop: RealizationA
—*—Closed-Loop: Realization B

Fig. 2. Control vs. time for the standard case (case study 1).

Table 2
Parameter uncertainties

Parameter

CDO
CL.
ME

MP

P

Uncertainty (%)

10
10
l

1.5
10

Parameter

Cv

li
a

Uncertainty (%)

5
0.5
0.1
l
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Table 3
Orbit characteristics for the closed loop standard case (case study 1)

A

B

Realization

Closed-loop
Open-loop

Closed-loop
Open-loop
Nominal orbit

Apogee height
(m)

750051.3786
955135.2059

731829.9049
687526.6107
750000

Orbit
eccentricity

7.0763E
2.5867E

2.5564E
1.3953E
0

-6
'l

— z.

-3
-2

Orbit inclination
(deg)

- 25.000159
-25.312379

- 24.999736
- 24.952062
-25

The discontinuities in the closed-loop control histories
(Fig. 2) are due to the switching from one control history
to the next, at the updating times. Moreover, the upper
stage flight demands larger variations on the closed-loop
control histories once the time-to-go is even more close
to zero and the upper stage burning time is fixed.

4.1.2. Case study 2: free upper stage burning time
The MEC-B launch vehicle is composed by four stages

propelled by solid-fuel rocket engines. Solid-fuel rocket
engines have two features which distinguish them from
their liquid-fuel counterparts, namely, nonthrottleability
and nonshutoff capability (burning time fixed). For
closed-loop guidance and control purposes, the solid-fuel
features become a drawback. In order to cope with the
uncertainties and perturbations, the additional control
degree of freedom assured by the throttleability and
shutoff capability of a liquid-fuel propelled rocket engine
would improve the resulting orbit characteristics. There-
fore, a liquid rocket engine would be desirable at least for
upper stages propulsion.

In order to investigate the performance of a liquid-fuel
propelled upper stage during a real flight mission, the
time of burning of the fourth stage was left to be free, i.e.,
it was assumed that the fourth stage exhibits the shutoff
capability. This approach is equivalent to assume that
the fourth stage is propelled by a liquid-fuel rocket engine
at full-throttle, displaying the same characteristics of its
solid-fuel counterpart, except the burning time which,
due to the shutoff capability, is free.

Initially, a nominal reference time of burning for
the fourth stage equal to the original fourth stage
solid-fuel time of burning was assumed. Such a time
was then appended to the control history y and was
hence updated accordingly. Also, even the resulting mass
of the fourth stage propellant and satellite was known, it
was assumed that their masses are a priori unknown
apart.

Note that a fraction of the satellite mass calculated by
the trajectory optimization problem should be allocated
to an additional propellant mass, leading to a smaller
actual satellite mass. With this approach after performing

some simulations, one should be able to establish an
additional propellant mass which could safely ac-
complish the mission. On the other hand, one could
explore the other liquid-fuel rocket feature by assuming
one can control the mass flow rate (throttleability). How-
ever, the implementation of such a feature is not só
straightforward.

Fig. 3 presents the closed-loop control histories behav-
ior obtained in the simulation study for realizations
A and B as compared to the open-loop control history. It
can be noticed that the additional degree of freedom
provided by the shutoff capability turned out to demand
smaller variations on the closed-loop control histories for
the upper stage flight as compared to the standard case.
Table 4 shows the resulting orbit characteristics and the
fourth stage time of burning.

4.2. Closed-loop results analysis

For the standard case, the results presented show that
for a real flight, the closed-loop guidance and control
procedure yields smaller orbital injection errors. For the
MEC-B data collection class satellite, the tolerable errors
for orbital injection are (Madeira, 1996):

• apogee height: + 50 km,
• orbit eccentricity: + 0.05,
• orbit inclination: °.

Accordingly to Table 3, for ali realizations the closed-
loop procedure could inject successfully the satellite
into the desired orbit; the orbital injection errors are
inside the tolerable interval. However, the application
of the control history in an open-loop fashion could
not achieve the apogee height error inside the tolerable
interval.

For the free upper stage burning time, the results
presented suggest that a liquid-fuel propelled rocket
engine for the upper stage propulsion would achieve
smaller orbit injection errors. Beyond, an upper stage
configuration with a burning time additional capability
of about 2 s seems to be suitable for complete the mission
safely. Such a configuration demands approximately for
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a satellite mass fraction in excess of 23 kg to be allocated
as additional propellant mass. The amount of fuel
which could eventually be saved may be further used for
execution of orbital maneuvers in order to improve the
satellite lifetime.

(dês)

Multiple Shooting

Open-Loop

—•—Closed-Loop: Realizalion A

—*—Closed-Loop: Realization B

100 200 300 400

Time (sec)

700 800

Multiple Shooting

Open-Loop

Seo,uència4

—•—Closed-Loop: Realization A

—A—Closed-Loop: Realizatior B

100 200 300 400 500

Fig. 3. Control vs. time for the free upper stage burning time (case
study 2).

5. Conclusions

The use of a stochastic gradient projection method for
trajectory optimization and low frequency closed-loop
satellite launch vehicle guidance and control was
presented and tested.

The trajectory optimization results obtained show the
potential of the stochastic gradient projection method for
accurate orbital injection of payloads. Even the poorest
approach for the control history parametrization (the
first strategy) achieved tight constraints satisfaction. The
method was also successful in maximizing the payload
capability. The satellite mass obtained using the second
strategy was only 0.95% below the solution reported by
Zerlotti (1990) who used an optimal indirect multiple
shooting method.

The proposed closed-loop guidance and control pro-
cedure was able to cope with the uncertainties and per-
turbations typically found during a real flight mission
and inject satisfactorily a data collection class satellite
into orbit. The computational workload demanded and
reliability indicate the feasibility of real-time application.
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