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ABSTRACT 

A neural predictive control scheme is considered where Kalman filtering is used not only to train 

the associated feedforward neural network modeling the dynamics but to also estimate the control. 

An approach is proposed in which the optimization of the predictive quadratic performance 
functional used to determine the discrete  control actions is viewed in a typical iteration as a 

stochastic optimal linear parameter estimation problem. Direct analogy with Kalman filtering 

algorithms already developed for feedforward neural networks training  allows the derivation of full 

non parallel as well as approximated parallel processing versions of Kalman filtering control 

algorithms. These algorithms are shown to be the result of applying Newton’s Method to 

appropriate control optimization functionals and to provide solutions which converge to smooth and 

reference tracking controls  

 

1. INTRODUCTION 

 

Many authors have explored optimal linear parameter estimation procedures to develop both off line 

and on line neural network supervised training recursive least squares (Chen and Billings, 1992) and 

Kalman filtering (Chandran, 1994, Chen and Ögmen, 1994, Iiguni and Sakai, 1992, Lange, 1995, 

Scalero and Tepedelenlioglu, 1992, Singhal and Wu, 1989, Watanabe, Fukuda and Tzafestas, 1991, 

Rios Neto, 1997) type of algorithms. Numerical testing has indicated that in most of the applications 

they have a better performance than the usual Backpropagation algorithm.  
In internal model control schemes where neural networks are used to represent the plant model and 

its inverse (Hunt, Sbarbaro, Zbikowski and Gawthrop, 1992, Lightbody and Irwin, 1995) these 

algorithms can be used to train both neural networks and thus solve the control problem. However, 

when a predictive control scheme is considered, besides training the neural network to represent a 



predictive model of the plant, one needs to solve an optimization problem to get the control action 

(Mills, Zomaya, Tadé, 1994, Su, McAvoy, 1993). 

In this paper, previous experience in using stochastic optimal parameter estimation to solve 

optimization problems (Rios Neto and Pinto, 1989, Rios Neto and Cruz, 1990, Pinto and Rios Neto, 

1990, Prado and Rios Neto, 1994) is explored to consider an adaptive neural predictive control 

scheme completely based on Kalman filtering algorithms. The problems of the associated 

feedforward neural network training and of control determination are both viewed and treated in an 

integrated way as stochastic linear parameter estimation problems. This allows to view the problem 
in a more general stochastic framework and to derive full non parallel  and approximated parallel 

processing versions of control algorithms which are formally equivalent to versions of Kalman 

filtering previously derived and used for the problem of feedforward  neural network training (Rios 

Neto, 1997). Analysis of these control algorithms shows that they converge to the optimized 

solution of performance indexes formulated to guarantee smooth and reference trajectory tracking 

controls. 

 

2. PROBLEM FORMULATION AND SOLUTION SCHEME 

 

The problem at hand is that of controlling a dynamic system: 

 

  ( , )x f x u=  (1) 

 

for which discrete time nonlinear input-output models can be taken to predict approximate 

responses:  

 

 y t f y t y t u t u tj j j n j j ny u
( ) ( ( ),.., ( ); ( ),.., ( )) − − − −1 1  (2) 

 

where t t j tj = +  . 

The adopted neural predictive control scheme uses a feedforward neural network which can 

uniformly and with the desired accuracy learn a mapping as that of Eq.(2) (Chen and Billings, 1992) 

to model  the dynamic system of Eq. (1). This internal model neural network then provides the 

response model that can be used  to determine smooth and reference trajectory tracking control 

actions by minimizing a predictive quadratic index of performance of the type usually adopted in 

predictive control schemes ( see, e.g., Hunt, Sbarbaro, Zbikowski and Gawthrop, 1992, and Su and 

McAvoy, 1993): 
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 where as before t t j tj = +  ; y tr j( )  is the reference response; n defines the horizon over which the 

tracking errors and control increments are considered; R t R ty j u j( ), ( )  are positive definite weight 

matrices; ( )y t j  is the output of the feedforward neural network trained to approximately model the 

dynamic system of Eq. (1) and which can be formally represented by: 

 



 ( ) ( ( ),.., ( ); ( ),.., ( ),  )y t f y t y t u t u t wj j j n j j ny u
= − − − −1 1  (4) 

 

where w  are the neural network parameters adjusted or estimated along training. 

Thus, in summary, for the solution of the resulting neural predictive control problem it is needed: 

(i) to choose a feedforward neural network with appropriate architecture and size, which in a 

process usually involving both off line and on line supervised training can learn from dynamic 

system input output data sets how to represent the mapping which is a nonlinear discrete model of 

this dynamic system; 

(ii) to solve with respect to the control actions, on line and in a small fraction of t  the nonlinear 
programming problem of minimizing an objective function constraining  smooth and reference 

trajectory tracking control actions, as that in Eq. (3), subjected to the constraint of Eq. (4). 

 

3. KALMAN FILTERING INTEGRATED SOLUTION 

 

The problem of supervised training of the feedforward neural network used in the predictive control 

scheme can be treated using Kalman filtering algorithms. Versions of this kind of algorithms with 

different levels of approximation can be found in the literature. These versions may vary from full 

non parallel algorithms, mostly suitable for off line use , to simplified parallel processing algorithms 

(Rios Neto, 1997) for on line use. 

Exploring previously developed and related results (Rios Neto and Pinto, 1989, Rios Neto and 

Cruz, 1990, Pinto and Rios Neto, 1990, Prado and Rios Neto, 1994), a method is proposed where 

the problem of detemining the predictive control actions is also treated as one of stochastic optimal 

linear parameter estimation, allowing the derivation and use in a given iteration of the same Kalman 

filtering type of algorithms, as in the neural network training. 

The method starts by assuming that the problem of control determination of Eq. (3) can be viewed 

in a more general stochastic framework as the following stochastic parameter problem with the 

output of the neural network, ( )
jtŷ , represented as in Eq. (4): 
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uy
+= −−−−   (5) 

 ( ) ( ) ( )
1ju2j1-j tνtutu0 −− +−=  (6) 

 ( )  ( ) ( )  ( )
jyj

T

yjyjy tRtνtνE0;tνE ==  (7) 

 ( )  ( ) ( )  ( )
juj

T

ujuju tRtνtνE0;tνE ==  (8) 

 

where j = 1, 2, ..., n; noticing that ( ) ( )
ynj1j tŷ,,tŷ −−  and ( ) ( )

unj1j tu,,tu −−  are the already 

happened and known delayed system responses and actions; and the erros ( )
jy tν  and ( )

ju tν  are 

of uncorrelated components as well as uncorrelated for different values of t j. A first consequence of 

this more general stochastic framework in the treatment of the problem is that the weight matrices 

in the objective function (Eq. (3)) have now the meaning of covariance matrices. This certainly 

facilitates their definition. 

In order to reiteratively treat the problem of Eqs. (5) and (6) as one of linear parameter estimation, 

one takes in an ith iteration the linearized approximation of Eq. (5): 
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where k0 = max[0,( j − ny − nu)];  0 (i) 1, to be adjusted to guarantee the linear perturbation 

approximation hypothesis; and the partial derivatives are calculated using the backpropagation rule 

in the feedforward neural network that approximates the dynamic system response model (see, e.g., 

Chandran, 1994). This observation type of conditions are then processed taking as a priori 

information, based on conditions of Eq. (6), and consistently with the linearized approximation in 

Eq. (9), the following: 
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where l=0,1,..,n-1; i=1,2,..,I; ( )u t−1  is the estimated solution from last control step; (i)(i+1) ; 

),(ˆ)1,( ituitu ll =+ , the approximated estimated value of )( ltu  in the ith iteration; and for i=1 

estimates or extrapolations of estimates of last control step are used. 

For j=1,2,...,n and l=0,1,...,n-1,the problem of Eqs. (9) and (10) is one of stochastic linear parameter 

estimation, and in a more compact notation where: 
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it can equivalently be expressed as : 
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where the meanings of the compact notation variables are obvious by identification of  Eqs. (11) 

and (12) with Eqs.(10) and (9), respectively. Using a Kalman filtering estimator there results in a 

typical iteration: 
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where R t R t R t Iu y u( ), ( ),  ( , )  are the error covariance matrices of V t V t U t I U tu y( ), ( ), (  ( , ) ( ))− , 

respectively; and uI  an identity matrix. The control calculated with this algorithm is the minimum 

of the functional : 
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Thus, convergence to a smooth )(ˆ tU  control which will track the reference trajectory )(tyr is 

guaranteed since the feedforward network has the capacity of representing the dynamic system of 

Eq. (1) and of allowing a linearized approximation (Chen and Billings, 1992) in a ith iteration, 

provided a sufficiently small )(i  is considered. Another way of showing that convergence is 

guaranteed is by considering the equivalent form of algorithm of Eqs. (13) and (14): 
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and noticing that this is the result of applying Newton’s Method to the functional (see, e.g., 

Luenberger, 1984): 
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Following a way completely analogous to that adopted for the problem of neural network training 

(Rios Neto, 1997), one can generate an approximated version of problem of Eqs. (11) and (12) 

which can be paralleled processed for each value of l=0,1,..,n-1. To get this simplified version of the 

problem one approximates the values of Uk (t,i), k  l,  in Eq. (12) by ),( itU k . From these 

approximations results a problem which can be locally processed, and which is of the form: 
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The use of Kalman filtering to solve this problem leads to: 
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If this algorithm is considered in the equivalent and usual a priori form of a stochastic linear 

estimator, there results: 
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which is the result of applying Newton’s Method to the functional of Eq. (17) but having 
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in place of )(1 tRu

− . Convergence to a smooth control which tracks the reference trajectory is thus 

also guaranteed for the parallel processing version of the control determination, as given by Eqs. 

(19) and (20) or Eq.(22). 

 

3. SIMULATION AND RESULTS 

 
As an example of application of the previously described methodology, consider the following 

system proposed by Chen and Khalil, 1995, and also used by Liu, Kadirkamanathan and Billings, 

1998, as an example for testing  a predictive control scheme: 

 

 yt   =   
2.5 yt−1  yt−2

1 +  yt−1

2
 + yt−2

2  +  0.3 cos 0.5 yt−1  +  yt−2( )( ) +  1.2  ut−1  (24) 

 

Let the reference input signal be given by r(t) = sin( t/500 ). The initial condition of the plant is 

given by ( y-1, y-2) = (0, 0). Then, it is proposed to control a plant represented by Eq. (24) to track, as 

close as possible, the reference input signal r(t) using the proposed predictive control strategy. 

To accomplish such task, a multilayer perceptron neural network with 5 neurons at input layer, 20 
neurons at the hidden layer and 1 neuron at output layer was trained. Patterns for training were 

obtained from Eq. (24) by using random values of ut-1 uniformly distributed between –6.0 and 6.0. 

Then, the neural network was chosen with configuration: 

 

 ( )1t3t2t1tt u ,y ,y ,yf    y −−−−=ˆ  (25) 

 

Results showed that for this plant, the prediction of only one step ahead was enough for obtaining 

good tracking of the reference signal. Figure 1 shows examples of patterns used for neural network 

training. Figure 2 shows the tracking signal r(t) and output of the plant yt and in Figure 3 it is shown 

the tracking error r(t) – yt. Finally, Figure 4 shows the input control ut-1 used for plant control. As 

can be observed from Figures 2 and 3, the control action obtained by application of the proposed 

methodology, results in a smooth and relatively accurate tracking of the reference input by the plant. 

These results compare with the ones obtained by Liu, Kadirkamanathan and Billing, 1998. 

 

4. CONCLUSIONS 

 

The use of Kalman filtering as a tool to derive adaptive neural predictive control algorithms was 

explored. Viewing the solution of the optimization problem of control action determination as one 
of stochastic parameter estimation reduced this problem to one formally equivalent to that of 

estimating the weights in feedforward neural network supervised training . This allowed an 

integrated treatment of both problems, using Kalman filtering algorithms. 



 

Figure 1 – Pattern Examples Used for Neural Network Training. 

 

 

 

Figure 2 – Tracking and Reference Signals. 



 

Figure 3 – Tracking Error:  r(t)  -  yt. 

 

 

 

 

Figure 4 – Input Control Signal:   ut-1. 



 

In analogy with results previously developed for feedforward neural network training [9], two 

versions of algorithms were developed for the control determination. The first was one where the 

approximation is the iterative approach due to linearization of equations , and where local parallel 

processing is not attained ; this version can be used with serial processing in situations where high 

speed of processing is available and plant time constants are not so small. The second one was an 

approximated version , but one which attains local parallel processing and intended for real time , 

adaptive control schemes.  
Both versions of algorithms were shown to converge to the solution of applying Newton’s Method 

to the minimization of functionals which constraint smooth and reference trajectory tracking 

controls. 

The derived control Kalman filtering algorithms are expected to have a performance equivalent to 

that of the correspondent neural network training Kalman filtering algorithms, due to the fact that 

they are completely similar algorithms used to solve numerically equivalent parameter estimation 

problems. 
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