NEURAL PREDICTIVE CONTROL BASED ON KALMAN FILTERING ALGORITHMS
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ABSTRACT

A neural predictive control scheme is considered where Kalman filtering is used not only to train
the associated feedforward neural network modeling the dynamics but to also estimate the control.
An approach is proposed in which the optimization of the predictive quadratic performance
functional used to determine the discrete control actions is viewed in a typical iteration as a
stochastic optimal linear parameter estimation problem. Direct analogy with Kalman filtering
algorithms already developed for feedforward neural networks training allows the derivation of full
non parallel as well as approximated parallel processing versions of Kalman filtering control
algorithms. These algorithms are shown to be the result of applying Newton’s Method to
appropriate control optimization functionals and to provide solutions which converge to smooth and
reference tracking controls

1. INTRODUCTION

Many authors have explored optimal linear parameter estimation procedures to develop both off line
and on line neural network supervised training recursive least squares (Chen and Billings, 1992) and
Kalman filtering (Chandran, 1994, Chen and Ogmen, 1994, liguni and Sakai, 1992, Lange, 1995,
Scalero and Tepedelenlioglu, 1992, Singhal and Wu, 1989, Watanabe, Fukuda and Tzafestas, 1991,
Rios Neto, 1997) type of algorithms. Numerical testing has indicated that in most of the applications
they have a better performance than the usual Backpropagation algorithm.

In internal model control schemes where neural networks are used to represent the plant model and
its inverse (Hunt, Sbarbaro, Zbikowski and Gawthrop, 1992, Lightbody and Irwin, 1995) these
algorithms can be used to train both neural networks and thus solve the control problem. However,
when a predictive control scheme is considered, besides training the neural network to represent a



predictive model of the plant, one needs to solve an optimization problem to get the control action
(Mills, Zomaya, Tadé, 1994, Su, McAvoy, 1993).

In this paper, previous experience in using stochastic optimal parameter estimation to solve
optimization problems (Rios Neto and Pinto, 1989, Rios Neto and Cruz, 1990, Pinto and Rios Neto,
1990, Prado and Rios Neto, 1994) is explored to consider an adaptive neural predictive control
scheme completely based on Kalman filtering algorithms. The problems of the associated
feedforward neural network training and of control determination are both viewed and treated in an
integrated way as stochastic linear parameter estimation problems. This allows to view the problem
in a more general stochastic framework and to derive full non parallel and approximated parallel
processing versions of control algorithms which are formally equivalent to versions of Kalman
filtering previously derived and used for the problem of feedforward neural network training (Rios
Neto, 1997). Analysis of these control algorithms shows that they converge to the optimized
solution of performance indexes formulated to guarantee smooth and reference trajectory tracking
controls.

2. PROBLEM FORMULATION AND SOLUTION SCHEME
The problem at hand is that of controlling a dynamic system:
x = f(x,u) 1)

for which discrete time nonlinear input-output models can be taken to predict approximate
responses:

y(t;) =f (y(tj—l)"'iy(tj—ny);u(tj—1)1"1u(tj—nu)) 2)

where t; =t + jAt.

The adopted neural predictive control scheme uses a feedforward neural network which can
uniformly and with the desired accuracy learn a mapping as that of Eq.(2) (Chen and Billings, 1992)
to model the dynamic system of Eq. (1). This internal model neural network then provides the
response model that can be used to determine smooth and reference trajectory tracking control
actions by minimizing a predictive quadratic index of performance of the type usually adopted in
predictive control schemes ( see, e.g., Hunt, Sbarbaro, Zbikowski and Gawthrop, 1992, and Su and
McAvoy, 1993):

J= [i[yr () =9I R (t Ly, (X)) - 9(t )]+ i[u(t,-) —u(t; )1 R (t)[uct) —u(t; )12 (3)

where as before t; =t + jAt; y, (t;) is the reference response; n defines the horizon over which the
tracking errors and control increments are considered; R (t;), R,(t;) are positive definite weight
matrices; Y(t;) is the output of the feedforward neural network trained to approximately model the
dynamic system of Eq. (1) and which can be formally represented by:



9(t)=F (9t 2, 9t DiuCt; ), Uty ) W) @)

where W are the neural network parameters adjusted or estimated along training.

Thus, in summary, for the solution of the resulting neural predictive control problem it is needed:

(i) to choose a feedforward neural network with appropriate architecture and size, which in a
process usually involving both off line and on line supervised training can learn from dynamic
system input output data sets how to represent the mapping which is a nonlinear discrete model of
this dynamic system;

(ii) to solve with respect to the control actions, on line and in a small fraction of At the nonlinear
programming problem of minimizing an objective function constraining smooth and reference
trajectory tracking control actions, as that in Eq. (3), subjected to the constraint of Eq. (4).

3. KALMAN FILTERING INTEGRATED SOLUTION

The problem of supervised training of the feedforward neural network used in the predictive control
scheme can be treated using Kalman filtering algorithms. Versions of this kind of algorithms with
different levels of approximation can be found in the literature. These versions may vary from full
non parallel algorithms, mostly suitable for off line use , to simplified parallel processing algorithms
(Rios Neto, 1997) for on line use.

Exploring previously developed and related results (Rios Neto and Pinto, 1989, Rios Neto and
Cruz, 1990, Pinto and Rios Neto, 1990, Prado and Rios Neto, 1994), a method is proposed where
the problem of detemining the predictive control actions is also treated as one of stochastic optimal
linear parameter estimation, allowing the derivation and use in a given iteration of the same Kalman
filtering type of algorithms, as in the neural network training.

The method starts by assuming that the problem of control determination of Eq. (3) can be viewed
in a more general stochastic framework as the following stochastic parameter problem with the
output of the neural network, )7(t i ), represented as in Eq. (4):

v.(t;) = oty - 9l Juley ) (( D)+ v () )

0 — ulty) - ult,) + v, (t,.) (©6)
E[Vy(tJ ] = 0; E[Vy(tj)v;(tj)] = R ( J) (7)
el t]=00 e,V ]=R, () ®)

where j = 1, 2, ..., n; noticing that 9(tj_1), 9(tj_ny) and u(tH), e U(t,;nu) are the already
happened and known delayed system responses and actions; and the erros vy(t j) and v, (t j) are

of uncorrelated components as well as uncorrelated for different values of t;. A first consequence of
this more general stochastic framework in the treatment of the problem is that the weight matrices
in the objective function (Eq. (3)) have now the meaning of covariance matrices. This certainly
facilitates their definition.

In order to reiteratively treat the problem of Egs. (5) and (6) as one of linear parameter estimation,
one takes in an ith iteration the linearized approximation of Eq. (5):



Jj-1
a1y, () =Yt = 20/ Q) g [1etD) = (1 D+, (1) )
k=k,
where k, =max[0,(j—n,—n,)]; 0<a(i)<1, to be adjusted to guarantee the linear perturbation

approximation hypothesis; and the partial derivatives are calculated using the backpropagation rule
in the feedforward neural network that approximates the dynamic system response model (see, e.g.,
Chandran, 1994). This observation type of conditions are then processed taking as a priori
information, based on conditions of Eq. (6), and consistently with the linearized approximation in
Eq. (9), the following:

i Ya(t,) ~u(t, D] = Uty ) — 0t )] + SV, (6) (10)

where 1=0,1,..,n-1; i=1,2,..,I; 4(t ;) is the estimated solution from last control step; a(i) < a(i+1);
u(t,,i+1) =uf(t,,i), the approximated estimated value of u(t,) in the ith iteration; and for i=1

estimates or extrapolations of estimates of last control step are used.
For j=1,2,...,nand I=0,1,...,n-1,the problem of Egs. (9) and (10) is one of stochastic linear parameter
estimation, and in a more compact notation where:

U(ti)=[u’ (t,,i):u’ (t,i):..cu” ¢, D] ; U, (t,)=a(t,)
it can equivalently be expressed as :

a(U () —U (t,)]=U (i) —U (i) +V, (1) (11)
a)Z"(t,i)= H (DU -ULD] +V, ) (12)

where the meanings of the compact notation variables are obvious by identification of Eqgs. (11)
and (12) with Egs.(10) and (9), respectively. Using a Kalman filtering estimator there results in a
typical iteration:

U(t,i) =U (t,i) +a@®U ) -U D]+ Kt )a@Z" i) - H" ¢ DU ) -U )] (13)
K(t,iy=R,()H" (6, )[H" (t,)R, () H" (1,i)+ R ()] ' =

[RIA) +HY DR OH"CDITTHY G, DR, ()  (14)

U) =U(,1), R,(t1)=[I, - K DH"®t DIR, () (15)

where R, (t),R (t),ﬁu(t, I) are the error covariance matrices of V,(t),V,(t), W(t,1)-U@),
respectively; and 1, an identity matrix. The control calculated with this algorithm is the minimum
of the functional :



J(a,i)=[[a()Z" (t,i)— H" (t,)[U(t,) - U@,) R (Ola()Z"(t,i) - H"(t,)[U(1,i) - U (t,)]] +

[U(1,1)~ T (t,1) — a0 ()~ U@,)I] R OIU(&i) - T (t,i)— a(D)[U(t,) - T (1,i)]]]/2

Thus, convergence to a smooth U(t) control which will track the reference trajectory y, (t)is

guaranteed since the feedforward network has the capacity of representing the dynamic system of
Eg. (1) and of allowing a linearized approximation (Chen and Billings, 1992) in a ith iteration,
provided a sufficiently small «(i) is considered. Another way of showing that convergence is

guaranteed is by considering the equivalent form of algorithm of Egs. (13) and (14):
U(t,i) = U(t,i) +[ R () + H" (6,1) R (O)H"(6,1)]" a()[R, () U(t_) - U (t,i)] +

, _ (139
+ H ()R () Z"(1,0)]

and noticing that this is the result of applying Newton’s Method to the functional (see, e.g.,
Luenberger, 1984):

3o =[2*" R Z° )+ U M) -U (t )] R O (1) -U (¢ ]I/ 2 (17)

Following a way completely analogous to that adopted for the problem of neural network training
(Rios Neto, 1997), one can generate an approximated version of problem of Egs. (11) and (12)
which can be paralleled processed for each value of 1=0,1,..,n-1. To get this simplified version of the

problem one approximates the values of U, (¢,i), k=, in Eq. (12) by U, (t,i). From these
approximations results a problem which can be locally processed, and which is of the form:

a()t ) —u(t,D)]=u(,,i)-0(,,i)+V,®) (17)
a(i)Z(t,i) = H," (t,)[u(t,.i) - T, )] +V, (1) (18)

The use of Kalman filtering to solve this problem leads to:

Gty i) =T, i) +a()at,) U, )]+ KL Da@[Z" i) —H' ti)at.,) -a, )l (19)
K(t1,i) =[R () + H" (4, )R (@)H " (t, DI H} (4R, (1) (20)
G(t) =0, 1), Ryt =[, - K&LDH' ¢ DIR, () (21)

If this algorithm is considered in the equivalent and usual a priori form of a stochastic linear
estimator, there results:

(t,,i) =0 (1 0) + LR, (0)+ HY (6,)R O H) (6,)] D[R, ()it )~ (1,0)] +

. _ (22)
+ H' (tDHR(D)Z"(1,0)]



which is the result of applying Newton’s Method to the functional of Eq. (17) but having
R (t) = diag.[[R;"(1) + HY (tL.D)R,* ®H} (t,i)] " :1 =01,...,n—1] (23)

in place of R *(t). Convergence to a smooth control which tracks the reference trajectory is thus

also guaranteed for the parallel processing version of the control determination, as given by Egs.
(19) and (20) or Eq.(22).

3. SIMULATION AND RESULTS

As an example of application of the previously described methodology, consider the following
system proposed by Chen and Khalil, 1995, and also used by Liu, Kadirkamanathan and Billings,
1998, as an example for testing a predictive control scheme:

25y, Vo
= + 0.3 cos(0.5 + + 12 u 24
Nz 1+ ytz_1 +ytz_2 ( (yt—l yz—z)) -1 (24)

Let the reference input signal be given by r(t) = sin( =t/500 ). The initial condition of the plant is
given by (y-1, y-2) = (0, 0). Then, it is proposed to control a plant represented by Eq. (24) to track, as
close as possible, the reference input signal r(t) using the proposed predictive control strategy.

To accomplish such task, a multilayer perceptron neural network with 5 neurons at input layer, 20
neurons at the hidden layer and 1 neuron at output layer was trained. Patterns for training were
obtained from Eq. (24) by using random values of ut1 uniformly distributed between —6.0 and 6.0.
Then, the neural network was chosen with configuration:

yt = f(yt—l! YiorYis ut—l) (25)

Results showed that for this plant, the prediction of only one step ahead was enough for obtaining
good tracking of the reference signal. Figure 1 shows examples of patterns used for neural network
training. Figure 2 shows the tracking signal r(t) and output of the plant y: and in Figure 3 it is shown
the tracking error r(t) — y:. Finally, Figure 4 shows the input control uw1 used for plant control. As
can be observed from Figures 2 and 3, the control action obtained by application of the proposed
methodology, results in a smooth and relatively accurate tracking of the reference input by the plant.
These results compare with the ones obtained by Liu, Kadirkamanathan and Billing, 1998.

4. CONCLUSIONS

The use of Kalman filtering as a tool to derive adaptive neural predictive control algorithms was
explored. Viewing the solution of the optimization problem of control action determination as one
of stochastic parameter estimation reduced this problem to one formally equivalent to that of
estimating the weights in feedforward neural network supervised training . This allowed an
integrated treatment of both problems, using Kalman filtering algorithms.



Plant Output Y;
|
t‘%
_—_’:_-5

I j I ' I ' I
1} 100 200 a0g 400
Time (s)

Figure 1 — Pattern Examples Used for Neural Network Training.
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Figure 4 — Input Control Signal: uc.1.



In analogy with results previously developed for feedforward neural network training [9], two
versions of algorithms were developed for the control determination. The first was one where the
approximation is the iterative approach due to linearization of equations , and where local parallel
processing is not attained ; this version can be used with serial processing in situations where high
speed of processing is available and plant time constants are not so small. The second one was an
approximated version , but one which attains local parallel processing and intended for real time ,
adaptive control schemes.

Both versions of algorithms were shown to converge to the solution of applying Newton’s Method
to the minimization of functionals which constraint smooth and reference trajectory tracking
controls.

The derived control Kalman filtering algorithms are expected to have a performance equivalent to
that of the correspondent neural network training Kalman filtering algorithms, due to the fact that
they are completely similar algorithms used to solve numerically equivalent parameter estimation
problems.
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