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ABSTRACT An artificial neural network predictive control scheme is considered for satellite launch vehicle real time control. Kalman
filtering algorithms are used (i) to solve the spacecraft ascent optimization problem and define a reference trajectory, (ii) to train the
associated feedforward neural network modeling the dynamics of the plant and (iii) to estimate the control actions. It is shown that the
optimization of a predictive quadratic performance functional, used to determine the discrete control actions, can be viewed and treated,
in a typical iteration, as a stochastic optimal linear parameter estimation problem. The algorithms obtained are shown to be the result of
application of Newton’s method to appropriate control optimization functionals that provide solutions that converge to smooth and
reference tracking controls. The proposed scheme is then applied to a three-degrees of freedom nonlinear flight trajectory control of a
satellite launch vehicle. A vehicle reference ascent trajectory is initially obtained by parameterization of the control history and by using
a nonlinear programming technique similar to the one used to solve the control problem Results of simulations and tests for the situation
of trajectory control show an excellent performance of the proposed scheme.

Key Words: nonlinear systems, predictive control, neural networks, satellite launcher, trajectory optimization

1. Introduction

Although practical processes involve nonlinear behavior, due to implementation difficulties, specially the real time
control determination, most predictive control algorithms are based on a linear model of the process. As a result, they do
not give satisfactory control performance when the controlled process is highly nonlinear. Recently, it has been proved that
multilayer feedforward neural networks can model and approximate nonlinear functions arbitrarily well (Cybenko, 1989,
Hornik et al ., 1989, Funahashi, 1989). Based on this fact, a large number of identification and control structures that use
neural networks have been proposed (Narendra and Parthasarathy, 1990, Sanner and Slotine, 1992, Chen and Billings,
1992, Soloway and Harley, 1997, Liu et al., 1998). For neural network training, many authors have explored recursive least
squares (Chen and Billings, 1992) and Kalman filtering theory (Singhal and Wu, 1989, Watanabe et al., 1991, Iiguni et al.,
1992, Chen and Ögmen, 1994, Lange, 1995, Rios Neto, 1997) to develop both off line and on line neural network
supervised training algorithms. It has been observed that, generally, these algorithms furnish better performance than the
usual backpropagation algorithm (e.g., Da Silva and Rios Neto, 1999).

When a predictive control scheme is considered, besides training the neural network that will model the plant
dynamics, one needs to solve an optimization problem to get the control actions (Su and McAvoy, 1993, Mills et al., 1994,
Liu et al., 1998, Soloway and Harley, 1997, Zhu et al., 1999). In this case, control performance indexes are generally
minimized using nonlinear programming techniques.

A different approach is used here in the sense that stochastic optimal parameter estimation theory is used to design a
neural predictive control Kalman filtering algorithm. As a result, the problems of neural network training and predictive
control are viewed and treated in an integrated way as stochastic optimal linear parameter estimation problems.

In the second part of this paper, the feasibility of the proposed algorithm in the design of a satellite launcher’s guidance
control scheme is evaluated. A tri-dimensional guidance and control of a satellite solid-fuel launcher is investigated.
Initially a near optimal reference trajectory is obtained by application of a Stochastic Gradient Projection Method. Neural
training patterns are then obtained and feedforward neural networks are used to identify and model the nonlinear behavior
of the plant. Then, the predictive control algorithm is used to obtain the real time control actions necessary for reference
trajectory tracking and implementation of the guidance scheme. Results of simulations are very satisfactory with small
tracking errors and orbital elements very close to nominal values at injection point.



2. Control problem and neural network predictors

It is proposed control a dynamic system represented by

˙ x   =   f x,u( ) (1)

for which discrete time nonlinear input-output models can be taken to predict approximate responses

y t j( )  ≅ fn y t j− 1( ),  . . . ,  y t j− ny( );  u t j −1( ),  . . . ,  u t j −nu
( )( ) (2)

where t j = t + j∆ t.

The adopted neural predictive control scheme uses a feedforward neural network which can uniformly and with the
desired accuracy learn a mapping as that of Eq. (2) (Chen and Billings, 1992) to model the dynamic system of Eq. (1). The
fundamental idea in predictive control is to predict the vector of future tracking errors and minimize its norm over a given
number of future control moves. To accomplish this, the internal model neural network will provide the response model
that will be used to determine a smooth and reference trajectory tracking control actions. These actions are obtained by
minimizing a predictive quadratic index of performance of the type usually adopted in predictive control schemes
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where as before t j = t + j∆ t; y r t j( )  is the reference response, n defines the horizon over which the tracking errors and

control increments are considered; R y tj( ) and R u t j( )  are positive definite weight matrices, and ˆ y t j( ) is the output of the

feedforward neural network, trained to approximately model the dynamic system of Eq. (1) and which can be formally
represented as

  
ˆ y t j( )  =  ˆ f ˆ y t j −1( ), L, ˆ y t j−ny( ); u t j−1( ), L , u t j−nu

( ); ˆ w ( ) (4)

Here ˆ w  represents the neural network parameter vector, adjusted or estimated along training. Thus, in summary, for the
solution of the resulting neural predictive control problem it is needed:
(i) to choose a feedforward neural network with appropriate architecture and size. Then, in a process usually involving both
off line and on line supervised training, learn from dynamic system input-output data sets, how to represent the mapping of
the considered nonlinear discrete model (Eq. 2);
(ii) to solve with respect to the control actions, on line and in a small fraction of ∆ t, the nonlinear programming problem of
minimizing an objective function as that in Eq. (3) subjected to the constraint of Eq. (4).

3. Kalman filtering integrated solution

The problem of supervised training of the feedforward neural network used in the predictive control scheme can be
treated using Kalman filtering algorithms. Versions of these algorithms, with different levels of approximation, can be
found in the literature. These versions may vary from full non parallel algorithms, mostly suitable for off line use, to
simplified parallel processing algorithms (Rios Neto, 1997) for on line use. Here, a method is proposed where the problem
of determining the predictive control actions is also treated as one of stochastic optimal linear parameter estimation. This
allows the derivation and use, in a given iteration, of the same Kalman filtering type of algorithms as in the neural network
training.

The method starts by assuming that the problem of control determination can be viewed, in a more general stochastic
framework, as a stochastic parameter estimation problem such as

    
y r t j( ) = ˆ f ˆ y t j −1( ), L, ˆ y t j− ny( ), u t j −1( ), L, u t j −nu

( ), ˆ w ( ) + ny t j( ) (5)

0 = u t j −1( ) − u t j− 2( ) + nu tj −1( ) (6)
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where j = 1,2,..,n . The errors v y ( tj ) and v u (t j )  are considered to be constituted of uncorrelated components as well as

uncorrelated for different values of t j . A first consequence of this more general stochastic framework is that the weight

matrices in the objective function, Eq. (3), have now the meaning of covariance matrices. This certainly facilitates their
definition.

In order to iteratively solve the problem of Eqs. (5) and (6) as one of linear parameter estimation, one takes in a given
ith iteration the linearized approximation of Eq. (5)

  

α i( ) y r t j( ) − y t j , i( )[ ] =
∂ ˆ y t j( )
∂u tk( )

 

 
 
 

 

 
 
 

u tk ,i( ){ }
k= k0

j −1

∑ u tk , i( ) − u tk , i( )[ ] + n y t j( ) (9)

where k 0 = max 0, ( j −n y −nu )[ ]. The parameter α, 0 < α( i) ≤1 , is to be adjusted to guarantee the linear perturbation

approximation hypothesis. The partial derivatives indicated above, are to be calculated recursively using the
backpropagation rule and the trained feedforward neural network (Chandran, 1994, Soloway and Haley, 1997). This
observation type of condition is then processed, taking as a priori information, based on Eqs. (6) and (9), the following
equation (Rios Neto and Da Silva, 2000)
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where l = 0,1, ..., n-1 and i=1,2, ..., I. The control variable ˆ u (t− 1)  is the estimated solution from last control step and for a
new iteration it is assumed that: α(i ) ← α( i +1)  and u ( tl , i +1) = ˆ u (t l ,i ). For i=1 estimates or extrapolations of the control
variables are used.

For j=1,2, …, n and l=0,1, ..., n-1, the problem represented by Eqs. (9) and (10) is one of stochastic linear parameter
estimation. In a more compact notation,

    U t, i( )  ≡  uT t0 ,i( ) : uT t 1 ,i( ) :L : uT tn−1 , i( )[ ]T ;              ˆ U l t −1( )  ≡  ˆ u t− 1( )  
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The meanings of the compact notation variables becomes obvious if Eqs. (11) and (12) are identified with Eqs. (10) and
(9), respectively. Using a Kalman filtering estimator, results
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The matrices R u t( ) , R y t( )  and ˆ R u t , I( )  are error covariance matrices of Vu t( ), Vy t( ) and ˆ U t , I( ) −  U t( )( ) , respectively

and Iu is an identity matrix. A way of showing that convergence is guaranteed is by considering the algorithm in the
equivalent form (Eq. (13a))
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and noticing that this is the result of applying Newton’s Method to the functional (Luenberger, 1984)

JP =
1

2
 Z u T

t( )R y
−1 t( )Zu t( ) + U t( ) − ˆ U t−1( )[ ]T

R u
− 1 t( ) U t( ) − ˆ U t−1( )[ ]   

   (17)



In a way completely analogous to that adopted for the problem of neural network training (Rios Neto, 1997), one can obtain
approximated versions of Eqs. (11) and (12) which can be processed in parallel for each value of l=0,1, ..., n-1. To get this
simplified version one can approximate the values of U k ( t, i), k ≠ l,  in Eq. (12) by U k (t ,i) . These approximations lead to a
problem, which can be locally processed, and which also converges to a smooth control that tracks the reference trajectory.

4. Flight trajectory control and guidance

As an application example, a control scheme of a three degrees of freedom guidance of a satellite launch vehicle is
investigated. This scheme comprises trajectory optimization and definition of a reference trajectory, identification of the
plant by a multilayer perceptron neural network and plant control by using the proposed predictive control method in a
closed loop guidance scheme. The guidance scheme is supposed to act during the complete phase of vehicle ascent flight.
The principle applied here is to observe vehicle’s center of mass deviations in position and velocity from a suboptimal
reference trajectory and, calculate control actions in order to ensure nominal position and circular velocity at the injection
point. Neural network training patterns are created by appropriately perturbing the reference trajectory represented by the
history of the angles of yaw and pitch as functions of time. The projected gradient method (Madeira and Rios Neto, 2000) is
initially used to obtain a suboptimal reference trajectory. Then, an algorithm similar to the one presented here (Da Silva and
Rios Neto, 1999 and 2000) is employed to train a multilayer perceptron neural network that models and is used as the plant
emulator in the predictive control algorithm scheme. Four neural networks are used to model the plant with each net
modeling one of the four flight phases represented by the flight of the four stages.

4.1 Vehicle and mission

The launcher is supposed to be a four stages solid fuel LEO rocket capable of placing a payload of approximately 190
kilos at a 750 kilometers circular orbit with an orbital inclination of 25 degrees. At take off the vehicle has an estimated
mass of approximately 50 tons and each solid fuel rocket has a burning time of approximately 60 seconds. The mission
considered here consists of launching a payload from the launch site of Alcântara, Brazil, which is located at an altitude of
43,01 meters above sea level, -2,3173 degrees of latitude and –44.3677 degrees of longitude.

4.2 Equations of motion

A set of seven ordinary nonlinear differential equations are used to describe translational motion of vehicle’s center of
mass. Considering that r represents the modulus of the position vector; u, the radial velocity; v, the tangential velocity; T, dx,
dy, dz, lx, ly, lz, the propulsion, drag and lift forces components; φ, θ and ψ, Euler angles; m, vehicle’s current mass; µ, the
gravitational constant; and, α and β as the control angles of yaw and pitch, the set of equations that defines the vehicle’s
motion are given by (Madeira and Rios Neto, 2000):
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˙ m t( )  =   − γ i (24)

Vehicle’s aerodynamic, propulsion and mass characteristics used for trajectory simulations are the same as those found
in Madeira (1996).



4.3 Trajectory optimization

Application of the predictive control algorithm requires that a reference trajectory be specified. This reference trajectory
was taken as the suboptimal trajectory obtained by application of a Stochastic Gradient Projection Method, using the same
approach and methodology as done by Madeira and Rios Neto (2000). The control variables, chosen as the angles of pitch
and yaw (angles α and β, respectively), are defined by line segments whose nodes are parameters to be optimized. For each
control variable, four line segments are used to define flight of the first stage, two segments for the second stage, one
segment for the third stage and four segments for the fourth stage. Considering that the satellite mass and phase coast time
are also parameters to be optimized, a total of twenty-eight parameters are subjected to the optimization process. One
inequality constraint related to aerodynamic loads is added to the system under optimization in order to assure vehicle’s
structural integrity. This constraint can be expressed as

qαl   −   qαl( )
max

 ≤  0 (25)

where q represents dynamic pressure and αl is the angle of attack. A limit of 3000 N.rad/m2 for this constraint should be
observed during atmospheric flight.

Results of optimization showed that for the proposed vehicle’s configuration, it is possible to place a payload of
approximately 194.01 kilos at a circular orbit of 750 kilometers of altitude and inclination of 25 degrees. Suboptimal
histories of yaw and pitch control angles as functions of current time are plotted in Figures 1 and 2 (continuous curves).

4.4 System identification

Four feedforward neural networks of same structure identified the plant dynamics, represented by the set of seven
nonlinear differential equations, Equations 18-24. Each net was chosen with 8 neurons at the input layer, 30 at the hidden
layer and 6 at the output layer, all layers having a bias of +1. Patterns used for training were created by numerical
integration of the set of differential equations, Equations 18-24. Control variables, α and β, were obtained from the
suboptimal reference trajectory with values conveniently perturbed, in order to obtain trajectories covering a wide state
phase. In order to provide a surplus of energy to compensate for tracking errors, due to unmodeled effects and
approximation errors a satellite mass of 170 kilos, which is less than the suboptimal value, was used for trajectory
simulations. A set of 250 trajectories was simulated with neural patterns obtained with a 1-second interval frequency from
each trajectory simulated. This interval also defines the frequency of control actualization in the guidance scheme.

Neural patterns were obtained for each trajectory simulated by collecting a set of values for variables {h, u, v, φ, θ, ψ,
α, β} and collection of variables {h, u, v, φ, θ, ψ} obtained after 1 second interval. Here, variable h represents the
geometrical altitude. With a set of conveniently chosen dimensional variables, those two groups of variables were further
converted into values ranging from –1 and +1 and represented the inputs and desired outputs of the neural networks. From
the patterns obtained of the 250 trajectories simulated, patterns of 200 trajectories were used as neural network training
patterns and patterns of 50 trajectories were used for neural training verifications. Neural networks training were performed
until mean square errors of less than 1.0x10-6 were obtained. Each of the four neural networks was chosen to model flight
trajectory of a given stage.

4.5 Guidance scheme

The predictive control algorithm was then employed in a scheme of guidance and control of the satellite launch vehicle.
The reference trajectory to be tracked was defined by variables: geometric altitude, h, radial velocity, u, tangential velocity,
v, and, orbital inclination, θ and is the same suboptimal trajectory obtained previously. Equations 13-16 were then used to
obtain the control necessary for trajectory tracking. Results of simulations are presented in Figures 1-6. Figures 1 and 2
present the control histories obtained for the optimized trajectory (continuous curve) and for the guidance scheme (doted
curve). Note that since there is a surplus of energy left, it is compensated in the guidance scheme with maneuvers in yaw,
most significant during fourth stage flight. Figures 3a and 3b show variation of altitude and altitude tracking error as
functions of current time. A tracking error of only 751 meters were observed at burnout of the forth stage. On Figures 4a,
4b, 5a and 5b are shown the behavior of velocity components and tracking errors as functions of current time. It is observed
a small residual error of approximately 1.45 m/s on the radial velocity and a 0.46 m/s on the tangential velocity. Figures 6a
and 6b show variation of orbital inclination and tracking error. The final orbit has an inclination of 24.91º, which is very
close to the nominal value of 25º.

Calculations of orbital elements at the injection point shows an orbit with a semi-major axis of 7127769 m, eccentricity
of 0.000194, radius of perigee of 747996m and radius of apogee of 750765 m. Those values are very close to nominal



values. In conclusion, the guidance scheme based on the predictive control algorithm, for the condition of a satellite mass
whose value is inferior to the suboptimal value showed good results.

Fig. 1 - Angle of yaw α versus current time.

Fig. 2 - Angle of pitch β versus current time.

Fig. 3a - Altitude h versus current time.

Fig. 3b - Tracking error in altitude.

Fig. 4a - Radial velocity u versus current time.

Fig. 4b - Tracking error in radial velocity.

Fig. 5a - Tangential velocity v versus current time.

Fig. 5b - Tracking error in tangential velocity.
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Fig. 6a - Inclination θ versus current time.
Fig. 6b - Tracking error in inclination.

5. Conclusion

The use of Kalman filtering as an optimal parameter estimation tool allows design of a method to solve neural
predictive control problems. This method can be shown to converge to Newton’s Method solution of minimizing functionals
which constraint smooth and reference trajectory tracking controls.

A numerically simulated test was considered by applying the proposed methodology to the control of a satellite launch
vehicle. Nonlinear equations of motion were used, neural network training patterns were created, feedforward neural
networks were trained and then, the control actions were obtained for a guidance vehicle control scheme. At injection point
it was observed a final orbit very close to the nominal orbit with small final tracking errors. The results are very satisfactory
and show that a guidance scheme based on a predictive control method is a viable possibility.

The simulation demonstrated that the predictive control algorithm convergence performance is equivalent to that of the
correspondent neural network training Kalman filtering algorithms because they are completely similar algorithms used to
solve numerically equivalent parameter estimation problems.
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