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OPTIMIZATION OF ACTUATORS/SENSORS PLACEMENT AND DERIVATION
OF REDUCED ORDER MODELS FOR THE OPTIMAL CONTROL OF FLEXIBLE
STRUCTURES

Paulo T. M. Lourencao
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During the development of control systems for
flexible structures, a reduced order controller has
to be derived with the requirements of being
effective with respect to some 'dominant® modes and
showing little disturbing effects over the
remaining "“non-dominant' ones. Closely related to
that problem, there exists the necessity of
specifying a convenient configuration for actuators
and sensors. The purpose of this paper 1is to
present a systematic approach to simultaneously
handle order reduction and placement of actuators
and sensors. Two methods are presented and compared
in this paper. In the first one, actuators and
sensors are placed in order to minimize spillover
effects and the reduced model is obtained by simple
truncation. In the second one, an optimization
problem is formulated and the reduced model along
with the positioning of actuators and sensors are
ocbtained so as to minimize the difference between
the responses of the original and reduced systems.
The controllers synthesis in both cases is made
using optimal direct output feedback and their
performances are verified by checking the reduced
controllers against the original model. For the
considered application it is found that the two
controllers show good performance regarding
spillover effects, with the optimal reduced
controller exhibiting a little better behavior.

INTRODUCTION

The search of solutions for the control of flexible

structures has received great attention in the last years
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due to its widespread application in several engineering
systems such as large ships, airplanes and spacecrafts‘. One
of the critical issues of that problem is the necessity of
deriving a controller based on a reduced order model for a
system which is best represented by a dynamic model of large
dimension. As a result spillover may occur, i.e., energy
initially directed to some "controlled modes" may be pumped
into “uncontrolled" or "unmodell ed modes . Another
distinguishing feature of the control of flexible structures
is that the designer has some "freedom" to place actuators
and sensors CA”S) over the structure®. Since A/S positioning
has a strong impact on controller performance, a method
should be sought that can simultaneocusly treat order

reduction and A/S placement.

Standard order reduction procedures wusually can be
thought as composed by two steps': adselection of *"critical"
or ‘“dominant” modes; bdreduced order model evaluation.
During the first step, a criterion such as mode
controllability, for example, is used to split the original
model into dominant and non-dominant parts. In the second
step, a reduced order model based on the dominant modes is
developed, and a compensation is introduced to take into
account the effect of the neglected modes. The performance
analysis of reduced order models is often made via the
comparison between their response and the response of the

original systems‘

Considering the special features related to the dynamics
and control of large flexibe structures, the objective of
this work is to present a systematic approach, based on
optimal control techniques, that can simultaneously handle
the derivation of reduced order models and A-S positionings.

Two methods are presented and compared in this paper. In
the first one, actuators and sensors are placed in order to
minimize spillover effects and the reduced model is obtained
by simple truncation of the original model. In the second
method, a constrained optimization problem is formulated.
The reduced model along with the positioning of actuators
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and sensors are obtained so as to minimize the difference
between the responses of the original and the reduced system

to white noise excitations.

The controller synthesis based on the the reduced
models, for the two cases, is made using optimal direct
output feedback® and the performance is verified by checking

the obtained reduced controllers against the original model.

To evaluate their behavior with numerically simulated
experimental results, the proposed methods are tested
adopting a simply supported rectangular plate.

DYNAMIC MODEL ORDER REDUCTION

In order to derive the equations of motion for flexible
structures two approaches can be used. For simple structures
that can be idealized as beams, membranes, plates, etc., the
standard procedure is to write down partial differential
equations and use weighted residual methods for
discretization. For complex structures, the usual procedure
is to use Finite Element Method packages. In both cases, the
final result is a system of linear equations written in
matrix form, with inertia, stiffness and eventually damping

and gyroscopic matrices.

The first step toward order reduction and controller
synthesis is to re-write the original system equations in

state variable form:

dxsdt = Ax 4+ Bu Cc1>

y = Cx cad

where x 1is the state vector composed by the modal
coordinates and corresponding velocities, u is the input

vector dependent on the type of actuators, and y is the



output vector which, on Lthe same way, depends on the type of
sensors that are used for control purposes.
In Eqs. (1) and (2>, the A,B and C matrices have the

fellowing structures:
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where O is the null matrix, I is the identity matrix,
W=diag(mf} is a diagonal matrix composed by the squares of
the eigenfrequencies W D=diag(2(’wi} is also a diagonal
matrix depending on the modal damping factor [ and on the
eigenfrequencies, F and G are matrices whose elements are
related to the value of the eigenfunctions Phi(r) at the
points defined by the position vector r, where actuators
and sensors are respectively placed. In the case where
actuators and sensors are ‘dual®” (force actuators and
displacement sensors for example) and located at the same
position Cco-located)d, G is equal to the tranpose of F. It
should be stressed that in Eqs. (1> and (2>, the B and C

matrices are influenced by changing A/S placement.

Taking for example, controllability/observability
measures as a criterion, the original system can be

separated into two parts:

dx /dt = A x + B u c4d

1 1 ¢ 1

dx /dt = A x 4+ B u (ds))

2 2" 2 2 .

y = Cx + C x 6D
171 2 2

where x1l contains the critical modes and xz the non-critical
ones. In Egs. (4),(5) and (6 the matrices A‘.I\z.B1.Bz.C1
and Cz have the same structure as the A,B and C matrices

previously defined.



The reduced model §{s written basically taking into

account the dominant modes present in x‘. in the form:

dx /dt = A x <+ B u <7
r r r

r

y = C x 8

In this work two approaches are proposed to obtain the
Ar. Br and Cr matrices. In the first one, Ar i< made equal
to A1 and Br.Cr matrices are "optimized” by changing A/S
positions so as to minimize the spillover effect. A
“Spillover Index” (SI> is defined involving observability
and controllability C(O&C3 measures of the dominant and
non—-domi nant modes. A configuration of A/S is found such
that the O&C of the dominant modes is maximized while the
O&C of the non-dominant ones is minimized.

In the second approach, a quadratic performance index is
defined which takes into account the difference between the
responses of the original and the reduced order models.
Since dominant and non-dominant modes are coupled via the
output Equation (6), a compensation is introduced by writing
the non-dominant modes as a 1linear combination of the

domi nant ones:

x, = Lx‘ e

A constrained optimization problem is then formulated
and the optimal reduced model is obtained via the
optimization of A/S positions over the structure (Br and Cr
matrices) and the elements of the L matrix in Eq.(8>. Again,

the Ar matrix is assumed to be equal to A‘.

Truncated Model

Considering a co-located pair force actuator and

displacement sensor, the displacement measured at that



position r. due to an arbitrary excitation F(t) applied by

the actuator can be written as:

n
wir ,t) = % (Phiz(r dZw . ) .fl FCtOh Ct=-71) dT (C10D
a L a di o 8
i=g

where the sum extends over the n considered modes,

w f“’i(i_(z)“z and h (td=exp(-{%w td#sinCw  t>. Observing

d
Eq.(10>, 1t can be noted that the convolution integral
depends on the type of the applied excitation whereas the
constant terms multipling that integral do not. Using this

idea, a "Spillover Index' can be defined as follows:

n. n .
L J
SICr ) =C £ Phi*Cr 270w d7C T Phi%Cr drw ) C11)
a L a di J a dj
imi J=1

where the sum in the numerator of the fraction is related
to the dominant modes and the other one, in the denominator,
is related to the non-dominant ones. It should be noted that
the SI index is associated only with the position in the
structure, and if a pair actuator/sensor is placed at a
point where SI is maximum, the O&C corresponding to the
dominant modes 1s maximized while the O&C for the

non—-domi nant ones is minimized .

The first reduced order model analyzed in this paper is
evaluated taking into account the dominant modes only,
without any compensation for the non-dominant ones, being
the positions of the A/S specified using the SI index
defined in Eq.C11).

Optimal Reduced Model

Different methods have been suggested for the derivation
of optimal reduced models®’®. The differences in the
proposed algorithms are mostly related to the structure
selected for the reduced state-space models. | In this paper
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the original method presented by Wilson’® is modified

considering three aspects:

adthe reduced order model structure is mounted over the part
of the original model related to the dominant modes (i.e.
A =A and B =B O

r 1 r 1

bdthe contribution of the non-dominant part of the original
model to the output of the system is compensated writing the
non-domi nant modes as a linear combination of the dominant

ones (i.e. C =C + C L>
r 1 2

cdinstead of optimizing the elements of the matrices of the
reduced system CAr.Br and Cr). an optimzation scheme is
developed to determine the best positions for A“S (which
affect the Bg'Bz’Cx' and Cz matricesd and the optimal L

matri x.

The first step is to define an error eCtd which is the
difference between the responses of the original and reduced

systems:
e(td) = yC(td - yr(t) caiad

Assuming that bocth systems are excited by a white noise
vector uCtd having the intensity N, the following

performance index can be defined:

J = 1im ECe CtdQeCtd) €13

t—m o

where E(.)> 1is the expectation operator and Q=QT is a
positive definite weighting matrix. The objective is to
minimize J through the determination of the matrices of the
reduced sistem. It is shown elsewhere’ ’" that the

performance index J can be re-written as:



J = triRM) 14>
where trl.] denotes the trace of the matrix and R is the
solution of the Lyapunov equation

FR + RFF + S = 0 C15)

with the definitions:

A O [ c'ac -cTac
F = 3P M=
0 A | -cTac cTac
r r F T
C16)
BNB” BNB: 1
S =
B NBY B NBT
r r r -

A necessary condition for optimality is‘:
0J/78p = 2trloF/70p RP1 + trioS/op Pl + tridM/8p Rl = O C17D

where p is any element of the matrices F,S or M, and P is

the solution of the associated Lyapunov equation:
F'P +PF + M= 0 18

Since in this work the parameters to be optimized are
the positions of the A“S and the elements of the L matrix,
Eq.C17) should be modified. Remembering that r; denotes the

position of A“S in the structure one can write:
0J/0ra = tr[dS/oru Pl + trlOM/dra R1 19>

where the derivatives of the matrices S and M are present
because those matrices are influenced by changing A-/S
positioning. Using li.i to denote the elements of the L
matrix defined in Eq.C8), another relation obtained from
Eq.C17) is:

OJldlij = tr[&M/dlij Rl 20>
8



The second (optimald reduced model considered in this
paper is evaluated using an algorithm based on Egs.
C14>,C16) and (C20), satisfying the constraints given by
Eqs. (15> and (18).

CONTROLLER SYNTHESIS

In order to compare the two approaches previously
mentioned, two controllers are sinthesized and their
performances against the original model are verified. Since
one is also concerned with the effect of placing sensors,
output feedback 1is considered. It 1is assumed that the
controller should be designed in such a way that only the
domi nant modes are to be affected. If there is any effect of
the controller over the non-dominant modes, this effect

should be in the direction of stabilization.

Despite the fact that only necessary conditions are
available for this problem, direct output feedback is used
in this work. Consider the system equations given by Eqgs.
C7) and (8), and the control law given by:

um=m —H)'r 21

An optimization problem is then formulated by defining a

quadratic performance index as follows:
1" = Eccaza 52 oxTQ"x ¢ u'RTw dtr a2

wher e Qf is a symmetric positive semi-definite matrix and rR"
is a positive definite matrix.
Denoting by Ac the system matrix in closed loop, the

next equation can be written :

A = A - B HC 23
r r

c r



Assumi ng that the Ac matrix in Eq.(23) is '"stable"”, the
performance index in Eq.(22) can be written® as:

I* = 12 triKx 1 c24>

In Eq.C24D Xo is the covariance matrix related to the
initial state erO). assumed to be a random variable, and K

is the solution of the following Lyapunov equation:
T L4 T .T @
KAC + ACK + Q + CrH R HCr = 0 (@=45D)

In order to implement the optimization algorithm, it is
necessary to have the derivative of J“l with respect to the

matrix H given by:
™ = T T
4 /70H = (R HCr - BrK)'Cr 26>
where W is the solution of the algebraic Lyapunov equation
WA + AW 4+ X =0 27>
(=3 (= o]

The problem one has at hand at this point is how to
specify the weighting matrices Q- and R. so as to have the

desired closed-loop performance.

Since the equations of motion are written in modal
coordinates, the state variables corresponding to each mode
are 'dynamically" decoupled. This fact suggests that modal
control methods could be used, i.e., a controller could be
first designed in the modal space where each mode can be
independently controlled, and in a second step the real
controller could be obtained in the physical world after a
coordinate transformation.

Considering that goal, the first task is to write a
“modal ' performace index where only the i-th mode is taken

into account:
3" =12 %% Q' x4 cf?) dt czed
L (o] rt L rt L

wher e Q: is a modal weighting matrix , ¢ is a factor and fi
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1is the modal “force®"”. It is well known that the modal forces
fi can be evaluated by:

f w =C1/¢)BP. x . c2od
1 | § ru

L

where Pi is the solution of the algebraic Riccati equation

AP + P A -C1/cDP.BB'P. + Q" =0 C30)
i 1 [ S t ©t t t i

Considering that the designer knows where to place
closed-loop poles of each mode, it is an easy task to
evaluate the modal gains for fi. The proposed scheme in this
work to ‘'specify" the weighting matrices is, knowing the
modal gains in advance, evaluate the Pi matrix from Eq.C(29)

L
and solve Eq.(C(30) for the elements of Qi. After that, the
reduced system weighting matrices Q‘ and R. are obtained via
a transformat,ion5 which takes into account Egs.(22) and (28)

as well as the input matrix Br.

NUMERICAL RESULTS

In order to verify the proposed ideas, a physical model
of a rectangular plate having 1ts four edges simply
supported is considered. The original model is assumed to be
composed by the first nine vibration modes, being the lowest
four taken as the dominant ones and the next five modes as
the non-dominant ones. The modal patterns and frequencies

are presented in Fig. 1. In order to specify the input and

11



output matrices, concentrated force actuators co-located

with displacement and velocity sensors are utilized.
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Fig.1 Modal Characteristics of the Original Model

Considering the first method proposed for order
reduction, Fig. 2 shows the distribution of the Spillover
Index C(SID given by Eq.C(11) obtained by varying the position
of four A/S symmetrically placed over the plate. That figure
illustrates that there is an "optimal" position where the SI
is maximum. Placing A /S at those points, the dominant modes

are better controlled and the non-dominant ones are less
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Fig. 2 Distribution of the Spillover Index SI Over the Plate
Varying A/S Positioning
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For the second approach suggested in this work, Fig. 3
shows the spatial distribution of the quadratic performance
index given in Eq. (14). That figure is obtained again by
changing the positions of four A/S symmetrically placed over
the plate, assuming that the L matrix in Eq.(9) is equal to

Zero.
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Fig. 3 Distribution of the Performance Index J Due to
Changes in A/S Placement Over the Plate

It is interesting to recognize that there is a mi ni mum
of J for A/S placed close to the same position shown in
Fig.2 for the maximum of SI. These results give support to
the hypothesis that the placement of A/S Plays an important
role for the control of flexible structures. The two
different approaches presented in this paper indicate almost
the same position as being the best for the placement of

these elements.

The complete optimization problem was solved using a
gradient method. In order to avoid numerical problems, the
optmization procedure was implemented in two steps. In the
first one the positons of A/S are optimized keeping the L
matrix constant. In the second step the A“S are kept fixed
and the best L matrix is sought. Those two steps are
repeated until convergence is reached. The final results are
presented in Table 1 and 2.
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Table 1

OPTIMAL ACTUATORS AND SENSORS PLACEMENT

Actuators- Sensors xX7a y7b
1 0.2034 0. 3281
e 0. 7066 0. 3281
3 0.2834 0.6718
4 0. 7086 0.6718

where x and y denote the position of the pair A/S along the
plate and a and b denote its lenght and width. In Table 1,
al though the final positions for the A/S resul ted
symmetrical, this symmetry was not imposed 1in the
optimization procedure but 1is a consequence of the

symmetrical boundary conditions of the plate.
Table 2

OPTIMAL L MATRIX
[ 0.1094 0.0000 0.0000 0.0000 ]
0.0136 0.0000 0.0000 O.0000
0.0000 0.0000 0.0479 O.0000
0.0000 0.0140 0.0000 O.0000
| 0.0000 -0.1312 0.0000 0.0000 |

It is interesting to notice that only one element at
each row of the L matrix presented in Table 2 is
significantly different from zero. This fact means that
after obtaining the best A/S arrangement, each non-dominant
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mode is better represented as related to one dominant mode

only. Fig. 4 {llustrates this result.
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Fig. 4 Relative Positions Between Modal Patterns and
Optimized A/S Configuration According to L Matrix Presented
in Table 2

Based on the two reduced models previously mentioned,
two controllers were synthesized and the results are shown
in Fig. 5. That figure presents the desired and obtained
positions for the closed-loop poles of the original system.

It can be noticed from Fig. 5§ that the proposed scheme
for the controller synthesis displays a good performance
regarding spillover effects. The poles related to the
controlled modes are placed near the *"desired" positions
while the poles associated to the "“non-dominant® modes are
not so much affected, being always shiftted to the left
direction in the complex plane. Also from that figure, it
can be noticed that the performances of the two controllers
are very close. Using the value of performance index given

by Eq.C(24) for the original system in closed-loop as another
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criterion for comparison, it could be observed that the

optimal controller shows a little better behavior-.
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Fig. 5 Positions of the Open and Closed~-loop Poles of the

Original System in the Complex Plane with Truncated and
Optimal Controllers

CONCLUSIONS

When controlling flexible structures, trying to satisfy
the requirement of small “spillover" effects, this work was
developed - with the aim of obtaining a reduced order model
to be used in the control synthesis. Due to the high
influence of the placement of actuators and sensors CADD
over the controller performance, two methods were presented
and compared taking into account the possibility of
changing the positions of those control elements. The first
reduced quel was obtained by simple truncation of the
original model and A/S were placed using a criterion that
embodies observability and controllability measures. The
second reduced order model was derived using an optimization
procedure that led to the minimization of the difference
between the responses of the original and reduced order
systems. In this case the optimized parameters were the
structure of the reduced model and the placement of A-S.

Using the two reduced models optimal regulators were
16




synthesized applying direct output feedback and their
performances verified with respect to the original model.

Analysing the results obtained from the numerical tests
performed, the following remarks can be made:

adPlacement of actuators and sensors has an important role

during controller synthesis for a flexible structure.

b)A/S positioning and reduced order model should be treated
using a procedure that can take both problems into account,

simultaneously if possible.

cdFor the considered application, the two controllers
obtained by the methods proposed in this work exhibit close
performance, being the controller based on the optimal
reduced order model a little better.

dDThe proposed scheme to synthesize controllers via direct
output feedback satisfies the requirement of controlling the
domi nant modes and having a little stabilizing effect over

the non—-dominant ones.

Considering the performance of the optimal reduced
model, it can be suggested that a natural continuation of
this work is to formulate an optimization problem where the
structure of the reduced model, the positions of A”S and the
gains of the controller could be evaluated using a global

approach.
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