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SATELLITE ATTITUDE CONTROL USING MULTILAYER
PERCEPTRON NEURAL NETWORKS

Valdemir Carrara*
Sebastisio Eduardo Corsatto Varotto™
Atair Rios Neto™

This work simulates and tests the use of artificial neural networks for
satellite attitude dynamics identification ard control. In order to exemplify
this application, a satellite with a rigid main body, three reaction wheels
and three flexible solar ponels was chos:n (lay-out similar to Brazilian
Remote Sensing Satellite). The main objective is to test the neural control
and analyze its interaction with the elastic motion and variable geometry
of the satellite. Two control schemes are used, the Internal Model Control
(IMC) and a modified version of the Fedback Learning Control (FLC). The
identification of neural nets parameters is serformed by a Kalman filtering
algorithm with a local parallel processing version in the IMC scheme and
by the steepest descent method in the FLC scheme.

INTRODUCTION

[n recent years the neural computing tas evolved significantly. Main reason
for the coming back of neural nets is, besides the increasing processing power of the
new generation of computers, the developmerit of new neural net architectures and
training algorithms. The number of applications has also increased: vehicle guidance,
financial analysis, printed circuit layout, voice synthesis and recognition, pattern
classification, optical character recognition, exchange rate forecast, manufacturing
process control and robotics among others (Ref 1). Aeronautics also has found use for
neural nets, mainly in failure analysis and detection, and automatic guidance and
control. Although space applications are still .imited, there are several possibilities:
subsystem failure detection, isolation and identification, autonomous orbit propagation
and control (Ref. 2), attitude determination and control, intelligent task managing, etc.

Attitude control of satellites normally is based on linearization of the
dynamical equations of motion and application of an optimization method in order to
guarantee the stability and controllability unde: the environmental conditions. Neural
nets can overcome the non-linearities of the attitude behavior. Beyond the non-
linearities inherent of the attitude dynamics, “he effect of non-rigidity can also be
present in the problem, due to flexibility c¢f some structure component and to
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geometry variation (due to module accretion, mass migration or appendage motion,
for instance).

[n what follows, two neural control methods are tested for attitude control, by
using simulated data of a satellite attitude behavior where either flexibles appendages
or variable geometry is present. Section 2 preseats the general perceptron neural net as
well as the training procedures. The equations of motion are presented in Section 3.
Simulation, test results and conclusions follow the preceding sections.

NEURAL NETWORKS

A neural network is a computational structure composed of several basic units
called artificial neurons. Each nerron can be understood as an operator that process
with a nonlinear activation function f the weighted sum of its inputs to produce an
output signal. The signal processing performed by the neuron establishes its
functionality. The connections between the artificial neurons, on the other hand,
define the behavior of the net, identify its applicability and training methods. In a
multilayer perceptron network the neurons are grouped in one or more layers, with the
output of each layer being the input to the next one.

The training process consists in adjusiing the neuron weights based on the
expected output and some optimization rules. In a supervised scheme the weights are
adjusted interactively, by comparing the output of the network with the desired value
at each step. This means that the training process teaches the net what should be its
output for a given input.

A feedforward multilayer perceptron network can be seen as a mapping
function with #y input elements and #; outputs. This neural network is composed by L
layers with n; (=1, 2, ..., L) neurons in layer /. If x| is the output of the i neuron of

layer /, w,j is the weight of the ;™ input (coming from the j™ neuron of the preceding
layer) and f” is the activation function, then:

xi = f'(z! +5 )=f’("'z"w,; X +bf] (1)
Jj=1

where x;'l is the output of the /™ neuron in previous layer /-1, and b/ is the bias,

introduced to allow the neuron to present a nor-null output even in presence of a null
input.

The determination process of the neuron bias can be transferred to the
determination of the neuron weights if one admits the presence of a new constant

input. Eq. (1) can be expressed in vector-matrix form, and if W’ is the weight matrix,
then

X = fl (f').—. fI(Wlxl—l) )
where J7 includes the neuron bias in the last co .umn; and the dimensions of the output
vector 1’ and the weight matrix W' are now nrtl e ny x np+1, respectively.

A simple feedforward neural net with linear activation function in the output
layer and the sigmoid activation function, Eq. ‘3), in the hidden layer can be used to
represent dynamical systems and limited continuous functions (Ref. 3).



1-e™
1+e”

f(x)= 3)

The increasing number of hidden layers normally makes the neural net to
better represent the dynamical system and to reduce the output error (Ref. 4 and Ref.
5) even when the same number of neurons are taken. Nevertheless, the capacity of
generalization, i. e. the ability to interpolate between points where the neural net was
not trained, is more accentuated on nets with fewer or even only one hidden layer
(Ref. 6). On the other hand, nets with high number of neurons or layers have small
output errors at the trained points. Thus if the dvnamics of the system is not complex a
neural net with one hidden sigmoid and linear output layers is sufficient for a large
number of applications. The number of neurons in the hidden layers is important for
the approximation degree: few neurons tend to decrease the stability and result in a
bad approximation, too many neurons cause dscillation on the output between the
trained points (Ref. 7).

Backpropagation Algorithm

Training a neural net generally consists in applying methods in order to adjust
or estimate the neuron weights. The training process normally minimizes the neural
net output error through the application of an optimization method. All methods need
to know how the net output varies with respect io the variation of a given neuron
weight. This can be achieved with the back propagation algorithm (Ref. 8), which
obtains the partial derivative of the output elemznts in a recursive way. In matrix form
the back propagation algorithm gives the derivative of the output vector with respect
to the /" weight of the i neuron of the /™ layer:

—r=dlo. =t o, “

where A’ is the back propagation matrix, obtained from:
A[ - Al+1 WI+IF1 (5)

with initial condition at output layer / given by A" = F¥, where F'is a diagonal matrix
with the derivatives of the activation function /-

! r=l1
Fl= diag[f’% =l .,n,il 6)

1

[t should be noted that, due to the inclusion of the neuron bias on the weight
matrix, ' should be a netl x ng+1 matrix, with the last diagonal element equal to
zero. In order to reduce the computational effort both 7' and W can be resized with
elimination of the last row when performing matrix products.

Steepest Descent Method

The steepest descent method, combined with the backpropagation, exhibits a
high degree of paralelism and simplicity. The weights are corrected based on the
minimization of the neural net output error. Weight updating starts at the net output
layer and then the error is backpropagated to the preceeding layer in order to compute
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its weight corrections. The minimization criterion uses the network output quadratic
error as the performance index:

1
YORELORCONEGESHORY0 )

where yd(t) and y(f) are expected and actual network output; and €(?) is the network
output error at time .

Weight updatings of layer k are perform zd using:

T

W (t+1)=W' )= AVJ' , VJ' = A gx'! (8)

where the gradient of the square backpropagated error VJ' comes from the
backpropagation matrix.

Convergence of the weights depends on the adjusting of the learning rate
coefficient A, ranging from 0 to 1.

Stochastic Optimal Parameter Estimarion Neural Nets Training

The supervised training of a neural net to learn a nonlinear continuous
mapping:

f(x):xeDc R" - y eR™ 9)

can naturally be treated as a problem of estimating the connection weight parameters
w in the network correspondent mapping:

f'(x,w):x eDc R” — y¢ e R™ (10)

such as to have f*(x, w) as close as possible to f(x) forx € D. A set of pairs (x(£),(?)),
=1,2,..N, given by the mapping in Eq.(S) is selected in order to get this
approximation, and the parameters are usually determined under the condition of
minimizing

J(w)=%{[w—w]fﬁ"[w—w]+z[y(t)—)f(r)]TR“(t)[y(t)—ye(nﬂ (11)

1=1

where w is given a priori value of w; y “(£) = £é(x(), w); P’ and E_l(t) are weight
matrices.

To solve the problem given by EC}. (11) an iterative scheme based on linear
perturbation can to be used (Ref. 9). In a k™ typical iteration, one usually takes:

J(w(k)) = %[[w(k) ~w] P [w(k)-w]+

> [ot vy~ 5.0 £, kD) - 0] T

R0 [o )~ 560 12, 5kD i) - k) | (12)



where i=1,2,.. ., ke; W =W, j(k,f) = Sfi(x(@). w(k)), f,(x(2),w(k)) is the matrix of
first partial derivatives with respect to w; 0< oX < 1 is an adjusting parameter to
guarantee the hypothesis of linear perturbation. The solution of Eq.(12) is formally
equivalent to the following stochastic parameter estimation problem

Ww=wk)+& (13)
& [y(@) - 3k,0)]= f2 (o), Wk [wik) - W(k) ]+ (1) (14)

where, E[g]=0, E[E ET] =P, E[v(1)]=0, E[v(t) vT(t)] = R(t), usually diagonal;
E[.] is the expectation value operator; £ e W?) are assumed to be gaussian distributed
and not correlated; and W(¢) is also assumed not correlated along =1,2,. . . N.

The problem of estimating the vector of weights w/ of neuron i of layer1 ,

can be solved in a local way, through an estimator of Gauss Markov, in the Kalman
form (Ref. 9); with the assumptions that:

) for weight parameters w, (k) of layers after the 1% layer there are

already available w,(k) and P, (k) the estimated values of

parameters and of the covariance matrix of the associated erros
ea(k);

(i)  for weight parameters w (k) of ther neurons in the same layer 1,
there are a priori estimates i7,(k) and P (k);

(iii)  for weight parameters w,(k) of the earlier layers there are a priori
estimates w,(k) and P.(k) .

In a typical iteration k=1,2,..., ke, thus results the local estimation:

Wi(k) = wi + Ki(K)zi (k) - H (k) (k)] (15)
P ®=1-Rio ! ®)F (16)
Ki(k)=PiH (k)" [H,.’ (K)PH' (k)" +R, (k)}l (17)

where R; (k)=E Vi (k)V, (k)" is the covariance matrix of observation errors and can
be evaluate as:
Ri(k) = £, (x(0), wi)P, (k) £, (x(0), w(k))” +
o, (@O, W) Ps (k) f,, (x(t), w(k))" +
o, @O, W) Pe(k) £, (x(t), w())" + R(2) (18)

ATTITUDE DYNAMICS

T'he variation rate of the angular momer tum, expressed in body coordinates x°,
»° and x°, is (Ref. 11) and (Ref. 12):
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where /, is the satellite inertia matrix, @’ is its angular velocity; Q(-) is the vector
product matrix, defined by:

0 -0, o,
Qo) =| o, 0 -o, (20)
-0, o, 0

and external torque is separated in environmsntal or disturbance torque, Npers and
attitude control torque, N, If the satellite is composed of articulated appendages, or
if some appendages like the solar arrays are flexible, the above equations shall be
modified in order to reflect the effects caused by the non-rigidity.

Articulated Appendages

An articulated satellite has a variable gzometry, due to the relative motion of
the appendages. Consider, for instance, a spacecraft pointed to Earth with solar arrays
tracking the Sun, or the process of unfolding the solar arrays after orbit injection, or a
robot space arm or even the docking of a new module in a space station. In all these
examples, both the inertia and center of mass position vary in time. Suppose that a
rigid main body with » articulated and also rigid appendages composes the satellite. In
order to avoid increasing the system degrees of freedom, the angular velocities and
accelerations of each articulation is supposed known. This is true for a large number

of satellites, as for example the Earth pointing satellite which drives the solar arrays to
the Sun.

The angular momentum rawc of the sate lite can now be expressed as a sum of
the individual momenta:

[’ = [/ Qr°)F° dm, + kzl L Q(r)# dm, . Q1)

where 1, and r; are, respectively, the position of the mass elements dm, e dmy,
belonging to the main body and the appendage k (k= 1, ..., n). The momentum rate
with respect to the satellite center of mass and the position vectors are expressed in
main body coordinates. ¥, and V; are the volumes of the main body and appendage k.
The above integral yields:

L=(L+J, )l + Qo) o’+H,. (22)

Except for J, and H,, the angular momentum rate is similar to the Eq. (14). J,

and H, represent the appendage and center of mass motion effects. They are defined
by:

n
T 0 « 0
J, = Z(Ak,o I A, —my Qag, —ay,)Qay, _al(:())) +
k=1
h

+}’: (mk Q(ay, - a;‘;))Z(uk Q(ay, —a,?,,)) (23)

k=1 k=1



and
H, =3} [Q(‘DZ +0;) 4, L A, (0 +0)) - 4, 1, AT (0f + Q(®3)®Z)]+
k=1

+ >:mk Q(ay —a, By - (zmk Q(a, —ay,)Bs )Z HeBo > (24)
k=1 k=1 k=1

where J is the inertia matrix of appendage k expressed in the appendage coordinate
system. Ay, is the rotation matrix between ~he appendage k and the main body
coordinate systems and my is the appendage mess. The position of a fixed point in the
articulation k defines the vector a,, with respect to the origin of the main body and

dko, With respect to the origin of the appendage frames. The mass proportion py is
defined by:

m

o =— @3)
m,+ Y. m
k=1 .
where 1, is the main body mass. The angular acceleration By is given by:
Br = Q0,) Q) (a5 —ap,) - Qo) An})ay, -
~Q(07) Qo] +0)a;, +Q(ap,)(Q0) o) +o}) (26)

Note that the appendage angular velocity @; and acceleration®; vectors

define both the momentum and the direction of the articulation joint. Equations of
motion can now be integrated in order to sinulate the attitude of a satellite with
variable geometry.

Flexible Dynamics

[n this case the equations of motion arc obtained by the Lagrangian approach
for quasi-coordinates (rotational motion) anc for generalized coordinates (elastic
motion) . The development is addressed to a peculiar class of satellites constituted of a
rigid ceatral body also containing -igid rotors, and rectangular solar panels which are
considered flexible after deployment.

The Lagrangian formulation for quasi-coordinates and for generalized
coordinates ( Ref. 13) has been used to derive the equations of motion as well as
Meirovitch notation. A flexible spacecraft represents a distributed-parameter system
which in theory has an infinite number of degrees of freedom. In practice, the system
must be discretized, to avoid partial differential equations in the formulation. It can be
done by the finite element technique, the lumped parameter method or the assumed
modes method. In this work the last one was used and thus, the elastic displacement
vector can be written as a linear combination of space-dependent admissible vector

functions ¢ multiplied by time-dependent generalized coordinates (Ref. 13 ) q in thes
form:

i =[¢]{q} @7

where [¢] is a rectangular matrix of space-dependent admissible functions and {q} is
time-dependent vector of generalized coordinates.



Taking into account this discrretization procedure, the kinetic energy can be
written as:

T =2} o} + 2 QTIO) + @' M@ +
{0} IMI{Q} + {0} [H]{¢} (28)

where [J] and [I] are the inertia matrices of the satellite in deformed state and of the
rotors, respectively; {w} e {Q} are the angular velocity vectors of the satellite
(absolute) and of the rotor (relative to the satellite), respectively; {q} is the rate of
change in time of the generalized elastic displacement vector, and finally [M] e [H]
are matrices involving integrals of space-dependent admissible functions.

The elastic potential energy can be writtzn as:

1
V=5{q}T[K] {a} 29)

where [K] is a symmetric matrix involving spatial derivatives of the admissible
functions.

The modified dynamics Euler's Equations were them derived by the Lagrangian
Formulation for quasi-coordinates, resulting:

{0} +[T]{o} + [B]T{o} + [B[1{Q} +
[®][H]{q} + HI{G} = {T,} - {Tc} (30)
where [®]is the same as Q[w]in Eq. 20.

The elastic dynamic equations have been derived by the Lagrangian
formulation for generalized coordinates and are given by:

[M1{d} +[H]" {&} +[K]{q} - {F} = {Q, - GD)

where {F} involves partial derivatives of [J] relative to generalized elastic
coordinates.

The Kinematics Equations were written using the Euler Parameter :
. ¥ 1 ~ * *
o= g} (32)

where [Q ] is a matrix composed by componets of the satellite angular velocity and
{q"} is the quaternion of satellite attitude.

In this study only the Gravity Grodient torque as external perturbation (Ref.14) and
the first out-of-plane bending mode for each solar arrays were considered. The in-
plane and torsional modes were not considered. This could be assumed because the
solar arrays are short and somewhat rigid in the satellite studied.

SIMULATION RESULTS
Satellite with Variable Geometry

The neural network control (NNC) was implemented and simulated using
MECB (Brazilian Complete Space Missions) satellite characteristics. They are small



satellites designed to test low Earth orbit communications and to perform Earth
observation.

Immediately after orbit injection, the spacecraft shall perform a rate reduction, in
order to stop the tumbling and rotation motion imposed by the launcher’s last stage
and separation torque. The satellite then opens 3 solar panels and enters in attitude
acquisition in order to point the panels to Sun. During the deployment, the mass
motion of the solar arrays changes the satellite inertia and center of mass position. It
was supposed that a neural net controls the attitude of the satellite in this phase. For
attitude data acquisition, the satellite uses a magnetometer and an analog sun sensor.
Attitude is controlled with hydrazine thrusters, on 3 axes, with a torque generation of
0.19 Nra maximum.

The network training process uses the attitude response to the torque control in
order to update the neural weiguis. A feedback learning control (F LC) algorithm
(Ref.15) was initially employed to train the network. However, FLC showed a strong
competition between the neural and the PID controls. If the neural signal u° was
opposite to the PID output »% then the satellite remained uncontrolled, and the
feedback error kept the process as if it as, in a steady state. Another important
drawback of the FLC was the absence of a fezdback dynamical signal at the neural
network input. If the network is driven only by a reference trajectory, then it can’t
generate torque when the trajectory reaches tte final point and the residual attitude
errors is not corrected. A different approach was adopted, as shown in Figure 1. The
neural network receives inputs from the trajectory error and the output torque. The
learning signal, as in the FLC, comes from the PID controller, but instead of
combining both PID and NNC, only the network output torque controls the attitude.
The learning process obtains the weights that minimize the PID signal. Due to the
delay in the feedback error, some torque oscillations may occur, and the control
becomes unstable. In order to avoid this behavior, the network output torque was also
added to the learning signal, as shown also n Figure 1. This procedure not only
guarantees the control stability, but also tends to minimize the control output and
therefore the hydrazine consumption.

Unfortunately, the process of adjusting the PID gains and the network
feedback torque gain K. was very difficult, s the stability of NNC teaching was
assured only within a reduced gain margin. The learning rate coefficient A had to be
small, in order to compensate the deviations of the learning signal from the unknown
teaching control 7.

(n the attitude simulations were carried out to teach the neural control,
propagation time was 1000 s of duration, with time step of 1 sec. The solar arrays
were opened at f = 500 s. Random initial conditions were selected uniformly
distributed between + 45° attitude angles and + 0,5 rd/s angular velocity. Reference
trajectory y* was fixed with null angular rate.
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Fig. 1 — Feedback error learning control without PID supervision.

Neural network inputs were composed by the attitude angles ¢”, n* and ?,
(from a XYZ rotation), the components of the satellite angular velocity, oy, o, and o,
and the solar array deployment sensor angle at “ime #. In order to provide information
about the attitude dynamics, these values at instant ¢, #-1 ... #-3 were also given. The
input vector contains also the components of the output torque 1, T, and 7, at times #-1
... 1-4. The network was composed of 40 neurons in the hidden layer (with sigmoid
activation function) and 3 output neurons for torque generation with hard limited
linear activation function. The learning rate cocfficient, A, was adopted as 0.001 after
several trials with different values. The PID controller gains was 0.08, 0.05 and 20,
respectively. These values were obtained by trials, based on learning convergence and
stability and do not reflect any optimization critzria.
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Fig. 2 — Satellite attitude during solar array deployment with a FLC
without PID supervising. :
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Fig. 3 — Satellite attitude during solar array deployment with PID control.

The same is true for the K. gain, adjusted in 0.02. After the training process
(6000 interactions), the neural net was used 10 control the satellite starting with a
different attitude, shown in Figure 2. As can be seen, NNC can provide an effective
attitude control even without the presence of the PID supervision.

The attitude motion was then compared with that of an exclusive PID
controller, with the same gains used to train the neural network. As shown in Figure 3,
the PID exerts a control on the satellite similar to that of the NNC when no geometry
variation occurs. The main difference, as expected, happens when the solar arrays are
opened. In such a situation the NCC performance is better than the PID, mainly due to
the adaptation caused by the deployment information.

Satellite with Flexible Appendages

The control structure used in this implementation is known as Internal Model
Control (IMC) (Ref. 16). In this structure an Artificial Neural Network (ANN) is
trained to behave as the dynamic system (direct model). Soon after, a second ANN,
the control network is trained according to the inverse model, using in the training the
retro-propagation of error in the direct mode] disturbances. The difference between
the real trajectory of the plant and the trajectory supplied by the direct model is used
then in the form of feedback to correct the state and to compensate the effects of the
disturbances . Due to the fact that the nets are not fed with information about the
disturbances " d " that affect the behavior of the system, they don't get to eliminate the
nonlinear errors in the trajectory due to the effects of these disturbances (Ref.17).

11



Ty

— ANN | u(k) *yp (k)
| Filter ﬂcintﬂj—r Plant

311__(’6) ‘
" | [ Ym(E)
1 Model | \/

Fig.4 - Internal Model Control (IMC)

The neural network control (IMC) was implemented and simulated using a
satellite with configuration similar to MECB remote sensing satellite characteristics.
During the phase of fine pointing, the satellite will have a horizon infra-red and fine
solar sensor, positioned in an appropriate way on the main body of the satellite. In this
phase of mission the satellite will have three actuators of the type Reaction Wheel

with a maximum torque generation of 0,2 Nm., to supply the torque demanded by the
control system.

The first step for the implementation of the neural control was to make the
identification of an ANN for the direct model, which had as inputs the control torque,
the displacements and the angular velocity at instants ¢, -/ and 7-2. After some tests
varying the number of neurons in each layer and verifying the error at the end of the
net training, it was adopted a configuration composed by 22 neurons in the input layer
(21 elements and one more due to the " bias "), 30 neurons in the first hidden layer,
10 neurons in the second hidden layer and 6 neurons in the exit layer. The hyperbolic
tangent activation function was adopted for all the neurons.

The second step was the identification of the inverse model. This training was
executed in an off-line way using the specialized inverse model (Ref. 3), with an
input vector similar to that used previously.Th: topology of the control network was
established taking as a basis the general lines delineated for the identification of the
direct nodel net; tests led to a configuration composed by 25 neurons in the input
layer, 30 neurons in the first hidden layer hide, 10 neurons in the second hidden layer
and 3 neurons in the exit layer. The hyperbolic tangent activation function was
adopted for all the neurons.



Simulations were made involving atttude maneuvers where perturbations
during orbit corrections were considered, with several initial conditions to evaluate the
performance of the proposed scheme. A typical maneuver is shown with the objective
of illustrating the performance of the control scheme. The Figures 5 and 6 show
respectively the response of the attitude angle and angular velocity in relation to the
reference signal. Figure 7 shows the torque demanded to the actuator for the maneuver
in the pitch axis. It is observed from these results, that at the end of the pointing
maneuver, the attitude angle as well as the angular speed of the satellite are inside the
acceptable accuracy. It is also noticed that the torque applied to the rotor stayed

limited to the compatible values.

30 T T 1 I I
50 P~ -
a = -
S
;-' 10 - Net output =]
=)
j = - -
<
5 20 | -
= Reference
< - i
‘jo -
20 I 1 I 1 l
0.0 400 80.0 1200 1600
“ime (s)
Fig. 5 - Attitude angle.
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Fig. 6 - Angular velocity.
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Fig. 7 - Torque demanded to the actuator.

[n the tested situations, the neural control procedure was able to execute the
satellite pointing maneuver. The free oscillaticns in the extremity of the panels (not
shown 1n the previous graphs) stayed quite small with values of the order of 3x10-5
mm, not introducing any type of sensitive disturbance in the attitude of the vehicle.

CONCLUSIONS

T'wo attitude control schemes using multilayer perceptron neural networks
were developed and tested under simulated ccnditions of use. The first one was an
attitude controller for a satellite with variable geometry derived from the feedback
error learning algorithm, without the PID control supervision. The results indicated
that the performance of the NNC can, under ceirtain conditions, be better than that of a
conventional PID controller. The second one was an attitude controler for a satellite
with flexible appendages using the IMC control procedure. Results obtained with this
scheme are very encouraging. It could be verified that the strong point of ANNs is
really their capacity of non linear mapping, mainly in the identification of the System
Direct Model. In the Inverse Model identification, special care should be taken
concerning the choice of the variables to represent the dynamic system, since they
play a fundamental role in obtainisig the correct inverse mapping of the plant.

The control schemes with " off-line " training of the ANNs facilitate a more
immediate application, however its reliability and robustness are limited, because such
controllers possess a restricted operation and are not capable to compensate eventual
disturbances or spurious interactions between the environment and the plant to be
controlled. Further studies shall address adaptive schemes using special computational
structures and training algorithms for "on-line" retraining of the ANNSs.
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