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ABSTRACT. A stochastic scheme is proposed to estimate the order of mag-
nitude of global errors in the numerical integration of ordinary differ-
ential equations initial value problems. The basic idea consists in
modelling a Markov stochastic vector sequence with variances in each dis
cretization time that constrain the order of magnitude of the global er=
ror vector components to be within estimated limits with 99% probabili-
ty. This is done by properly discretizing the dynamics given by the sys
tem first order variational equations and by properly perturbing this dy
namics with white noise derived from local estimates of truncation and
round-off errors. The paper presents the procedure to implement the
scheme when Runge-Kutta embedded formulas of two consecutive orders are
used. Results of preliminary tests are presented.

1. INTRODUCTION

In the numerical treatment of ordinary differential equations initial
value problems, theoretical results concerning the behavior of globaler
rors are not so new. In a step by step solution, these results either
qualitatively relate the order of magnitude of global and local errors
or quantitatively give upper bounds for global errors in terms of para-
meters dependent upon local errors, step size, problem and method used
(Dahlquist and Bjorck, 1974). It was only recently that one started
finding in the literature results which translate the theory into proce
dures of practical use (Zadunaisky, 1979; Prothero, 1980). A common
characteristic of the existing procedures is that they always give a de
terministic global error estimate. However, a stochastic approach is
necessary if one wants to have procedukes which are naturally fitted to
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be used as part of the software needed in the guidance and control of dy
namic systems. Typical situations are those where one has to deal with
state estimates predictions - as is the case in statistical orbit deter
mination - or when one has to calculate the evolutior with time of sys-
tem state from noisy measurements of strap-down instruments.

In the procedure to be proposed in the following sections, global errors
are considered in terms of their order of magnitude and estimated through
the dispersions of zero mean random variables belonging to stochastic se
quences which take in account the influence of both local truncation and
round-off errors. Although the procedure is not restricted to only this
situation, in this paper it is applied using a one-step method where
truncation error is locally evaluated by using Fehlberg's embedded formu
las of two consecutive orders (1968). To propagate and accumulate the
influence of local errors, the first order variational equations associ-
ated to the system being integrated are used. However, first order Euler
method can be considered to approximate the covariance matrix necessary
in each step to characterize global error in the estimation scheme
(Prothero, 1980).

2. PROBLEM STATEMENT
Consider a system of first order ordinary differential equations:
x=f(x,t) ¢)

where f(x,t) is a vector function of the nx 1 vector dependent variable

x and of the scalar independent variable t, assumed to have the required
regularity to guarantee the existence of an unique solution, x(t), once

given the initial conditions, x(to). Suppose that a discretization meth
od is used to generate a numerical approximation x(j) in the mesh points
tj(tO <tj stf). What is intended is, in some way, to have the capability

of estimating the behavior of the global error e(j), defined as:

e(d) = x(J) - x(ty) (2)
where x(t.) indicates the true solution, and where the numerical approxi
mation x(j) is obtained with the use of a zero-stable method of order P,
in order to have equal to one the difference between the exponents in
the asymptotic dependence on the step size of the local and global er-
rors (Dahlquist and Bjorck, 1974).
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3. GLOBAL ERROR ESTIMATION

In what follows the situation analysed is that where a one-step method
is considered and where truncation error is locally evaluated by the use
of embedded formulas of two consecutive orders (Fehlberg, 1968). Since
the errors involved are small, it is assumed that linear perturbations
give valid approximations allowing the use of the superposition princi-
ple after separately treating the contributions of truncation errors and
round-off errors.

3.1 - CONTRIBUTION OF TRUNCATION ERRORS

In anintermediate point tj’ as input information for the procedure to be pro
posed, a numerical approximation x(j) of the true solution x(t,) of sys-
tem (1) together with a random estimate E(j) to represent the global er-
ror are given., The vector random variable E(j) belongs to a Markov sto-
chastic sequence, with statistics:

Tl =, (3)

ELE()] =0, E[EQ)E
where E [+] is the expectation operator. The standard deviations correspond
ent to the diagonal variances of P(j) are supposed to be related to an
approximation of the order of magnitude of the true global error e(j) as
shown in developments that follow. To start the process in to, this
same reasoning is used to calculate P(0) as a diagonal matrix.

In a typical step, if T(p'1)(-) is the operator representing an one step
numerical integrator of order (p-1), then it results:

x(t5,0) =TT (x(e))) + P (3 (4)

where ep(j+1) is the error in the (j+1)th step, due to truncation and

given by (Fehlberg, 1968):

eP(341) = TP(x(t5)) - TP ) (x(t,)) + e(341) (5)
where the difference of integrators of consecutive orders gives an ap-
proximation to the upper bound of the error in each step. Control of
step size is done to keep ep(j+1) inside the tolerance limits of the ac
curacy asked for the results. Thus e(j+1) is negligible, that is, it
can be looked as a numerical zero. Since what is required is to have
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an error inside the limits of accuracy and since it does not matter where
this error is inside these Timits, as longas it is inside the lTimits,
then it is reasonable to model e(j+1) as a white vector sequence of inde
m
(

pendent components, e (j+1), as follows:

2
E[e™(§+1)] =0, Q4;(3+1) =E[e] (3+1)] -

oo TR (x(3)) - 8P 1 (x(4))2 (6)

where i=1,2,...,n, nbeing the dimension of vector x(t:); and Tchebycheff
inequality was used to guarantee that, independently of its distri-
bution, e?(j+1) has realizations with 99% chance of being inside toler-
ance Timits. Following the same reasoning, x(tj+]) is modelled by

m .

X (tj+]) given by

KM(tg,0) = TP (M) + PP (ge1) (7)
where

XM (t5) = x(3) + E(4) (8)

ePM+1) = TP (M) = TP (a1 ) e (41 (9)
resulting

XM(t5,0) = TP(x"(5)) + M (41)

which after a Taylor's expansion up to first order about x(j), disre-
garding terms of higher order, leads to:

. . . m, .
x"(t5,q) =Tp(x(a)>+T;’(tj)(x<a)) E(3) +e"(3+1) (10)
where Tp(x(j)) gives the value of x(j+1) and Tg(t.)(x(j)) is the result
J
of numerically integrating the state transition matrix equation

&(t,tj)=fx(x,t)-¢(t,tj) (11)

in parallel with the system of Equation 1, using the integrator Tp(-)
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with initial conditions:

Combining the definition of Equations 7 and 8 with the previous results,
one gets:

xm(tj+1)=x(j+1)+E(j+1) (12)

E[E(5+1)] =0 , E[E(3+1)ET(§+1)] = P(3+1)
P(§+1) = 8(3+1,3) o (3+1,3) +Q(3+1)
where Q(j+1) is as defined in Equation 6.

However, for any given realization of E(j), the term Tg(tj)(x(j))-E(j)

can be viewed as resulting from the numerical integration of the varia-
tional equation

E:fo’(x,t)E (13)

where fE(x,t) is the matrix of first order partials evaluated in the nu-
merically integrated trajectory. However, if E(Jj) is such to differ
from the truncation error by only one order of magnitude, Equation 13
can be integrated using Euler's method. This leads to the representa-
tion of E(j+1) as belonging to the stochastic sequence characterized by:

E(j+1)

E(3) +hy » £, (x(3)s t5) - E(3) +e"(3+1) (14)

where hj is the step size in tj; and the associated covariance matrix
given by:

P(3+1) = (I +h.-

3.2 - CONTRIBUTION OF ROUND-OFF ERRORS

In a typical interval of numerical integration, the input variables and
the ones resulting from arithmetic operations are rounded off inside the
computer. If floating arithmetic is used, it results that for any pair
of variables w and v the errors due to round off obey the condition
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(Dahlquist and Bjorck, 1974):
/fl(wopv)-wopv/</wopv/ -u (16)

where f1(-) indicates floating arithmetic; "op" indicates any of the four
elementary operations; and u is the machine unit (round off unit). Thus,
for a given problem, the round off error in each step strongly depends
upon the particular algorithm used.

In the case considered in this paper, the Runge-Kutta formulas presented
by Fehlberg (1968) are used. Assuming round off errors to be at most of
the order of magnitude of local truncation errors, it results

K

F1( 2 ¢ f ))) =x(j+1) +ex(j+1) (17)

x(Jj+1) = f1(x(j) + f1(h ok Tk

J
where the over bar is to indicate numerical values obtained after
rounding; the Cy and fk as in Fehlberg (1968); and for each component
xi(j+1),i = 1,2,...,n, the error can be limited as follows (Dahlquist
and Bjdrck, 1974):

K K

(- - _ -
/e, (3+1)/s|h;+ £ /(K+2-Kk)+C, - F. /+2h.-/ 3% C cFL /4% A-LOGU =
% "3 Lo A Bt WAL AL L

Taking the approach of also modelling this error as a white vector se-
quence of independent components, under conditions similar to those
taken for the truncation errors, results:

2
E[e} (3410120, E[e} (3+41)]=Ry; (3+1)= el (3+1) g

1 1

and whenever its order of magnitude is significative relative to
truncation error, its contribution is superposed to E(j+1) leading to a
global error represented by:

EC(3+1) = E(3+1) + M (3+1) (19)

and

PY(3+1) = P(§+1) + R(j+1) (20)
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th diagonal variance of Pt(j+1) gives a measure of the order

of magnitude of the accumulated global error associated to X(j+1).

where the i

4. PRELIMINARY TESTS

The preliminary tests were done using Fehlberg's RK7-8 formulas
(Fehlberg, 1968). The test case selected was one of those suggested by
Krogh (1970), corresponding to a restricted three body problem, that mod
els the motion of a satellite moving under the influence of the Earth
and the Moon. The equations of motion in the rotating (synodic) coordi-
nate system, using dimensionless quantities are (Szebehely, 1967):

n [l ] 3 ) 3
x]=2x2+x]-u (X]+u)/Y‘]-u(X]-u )/r‘2 (21)
x'2' = —in + Xy - p'Xz/Y‘? - uxz/rg
with initial conditions (Krogh, 1970):

x(0) =1.2 , x](0)=0 , x,(0)=0

x5(0) = -1.04935 75098 30319 90726

where
r = ((x]+u)2+xg)]/2=d1‘stance from the Earth
ro= ((x1-u')2+x§)]/2=d1'stance from the Moon

u=1/82.45 , u'=1-y4

The initial conditions taken give an orbit with period
T=6.19216 93313 19639 70674 ... providing a mean of calculating the
true global error at the end of each period.



80

A.RIOS NETO AND N.C.CARDENUTO

TABLE 1. ESTIMATED ERROR STANDARD DEVIATIONS/TRUE GLOBAL ERRORS
TIME [ o01(t)/es(t) oi/ei(t) o2(t)/ea(t) o3(t)/es(t)
T .186113855E-08/ | .436232905E-08/ |.252317107E-08/ | .191675823E-08/
.363797881E-09 .241853322E-09 .658361999E-09 .378349796E-09
2T .190382914E-08/ | .890784686E-08/ |.409984179E-08/ | .239164388E-08/
.436557457E-09 .158197366E-08 .446576109E-11 .378349796E-09
3T .239409823E-08/ | .100865133E-07/ | .453268581E-08/ | .279354623E-08/
.145519152E-08 .112227905E-08 .288094744E-08 .119325705E-08
4T .240477181E-08/ | .106932148E-07/ | .774237305E-08/ {.311185527E-08/
.291038305E-10 .190822637E-08 .504425926E-08 .698491931E-09
5T .284394204E-08/ | .105259284E-07/ | .100359916E-07/ | .355154685E-08/
.727595761E-09 .264338488E-08 .111394019E-08 .436557457E-09
6T .340670801E-08/ | .132512009E-07/ | .107424875E-07/ | .400246841E-08/
.139698386E-08 .249632562E-08 | .809652178E-09 .190630089E-08
7T .360552234E-08/ | .187472581E-07/ | .107717040E-07/ |.433280095E-08/
.222644303E-08 .616642697E-08 .282498378E-08 .275031198E-08 |
8T .382770053E-08/ | .225626169E-07/ | .111101079E-07/ | .456368641E-08/
.116415322E-08 .111531063E-07 .341051678E-08 .324507710E-08
9T .364301863E-08/ | .241609986E-07/ | .137799294E-07/ | .456978366E-08/
.157160684E-08 .134607525E-07 .203140615E-08 .510772225E-08
10T .385400056E-08/ | .241907691E-07/ | .170231611E-07/ | .474949470E-08/!
.291038305E-10 .140615121E-07 .308867393E-08 .500585884E-08

Results of Table 1 were obtained in a Burroughs 6800 using control of
step-size and the exigence of a local accuracy in each component not
worse than 1.E-10 (relative error). To propagate the error covariance
matrix, the state transition matrix differential equations were also in
tegrated with the RK7-8 formulas.

showed to be too much conservative.

Results tried with Euler's method

5. CONCLUSIONS

A new scheme to get global error estimates was presented. The objec-
tive is to have a valid tool in the evaluation of quality of numerical re-

sults in the simulation of dynamic systems. The preliminary tests done
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are only illustrative and, of course, very dependent upon the problem
chosen. Before the stochastic scheme can be considered as properly qual
jfied for general use, an exhaustive testing is necessary. A price to
be paid by its users is the need of also having to numerically inte-
grate the first order variational equations associated to the systemsimu
lated. Future developments should pay special attention to the possibil
ity of getting valid approximations which lead to a decrease in computer
time spent in the numerical treatment of these equations.
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