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Abstract

Supervised training of feedforward neural networks for nonlinear mapping and dynamical systems
modeling is addressed. Viewing neural nets training as a stochastic parameter estimation problem,
results in Kalman filtering are adapted to develop training algorithms. Many levels of
approximation are considered to develop a range of full non parallel to simplified parallel
processing versions of algorithms, together with an adaptive approach intended to give to these
algorithms the features of good numerical behavior and of distributing the extraction of learning
information to all training data.
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INTRODUCTION

In recent years, the experience with optimal linear parameter estimation procedures has been
explored to develop neural networks supervised training algorithms having the structure of
recursive least squares (Chen and Billings, 1992) and of Kalman filtering ( Singhal and Wu, 1989;
Watanabe, Fukuda and Tzafestas, 1991; Scalero and Tepedelenlioglu, 1992; Chen and Ogmen,
1993; Chandran, 1994; Lange, 1995).

In this paper the author further explores the possibility given by Kalman filtering. Previously
full non local processing (Rios Neto, 1994) and local parallel processing (Rios Neto, 1995)
feedfoward neural nets training algorithms are presented together with the development of an
adaptive procedure. Extending the stochastic optimal parameter estimation solution of the neural
net supervised training problem one models the weight parameters as random walk stochastic
processes. Noise dispersion adaptation (Rios Neto and Kuga, 1985) is then used as an automatic
way of conditioning the covariance matrix of parameters estimation errors, thus avoiding loosing
the capacity to extract information of new data as the processing goes on. The use of this adaptive
procedure is thus intended to be effective along the processing in distributing to all data the

extraction of learning information.

FUNDAMENTALS: FEEDFORWARD NEURAL NETWORKS AND DYNAMIC SYSTEMS

MODELLING

Among the types of feedforward artificial networks used for modeling and identification of
systems (Chen and Billings,1992) the most basic and frequently used one is the Multilayer
Perceptron made up of layers of basic artificial neurons connected forward, as illustrated in Fig.1,

for the ith neuron of a kth hidden layer, with ny neurons:
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Figure 1: Artificial Neuron
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with the activation function a(s) being typically taken as:

a(s)= 1/(1+ exp(-s)) or a(s)=tanh(s)

1)

(2)

(3)

The inputs to the first hidden layer are x’=x,i=212,...,n, the network input vector. For the

neurons of the output layer (k =1) it is sufficient to have and are frequently used zero threshold

weights ( w!,) and identity activation functions:
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J.=x = JZ_;W‘JXJ' d=12,..,m

(4)



Feedforward artificial neural networks can be trained to uniformly and with the desired

accuracy represent a nonlinear and continuous mapping ( see, e.g., Zurada, 1992):

f eCxeDcR"—>yeR" (5)

The theory already available (see, e.g., Hecht-Nielsen, 1990) guarantees that for the case of the

Mutilayer Perceptron it is enough to have a neural network built with just one hidden layer, as

illustrated in Fig. 2.

Figure 2: One Hidden Layer Perceptron

The training of a feedforward network is usually done by supervised learning, from mapping

data sets:

{x@),y®):y(0) = F(x(1)),t=12,..,L } (6)



adjusting (estimating) weight parameters to approximately fit the artificial neural net correspondent
computational model to this data of input-output patterns.

The processing by the trained artificial neural net of the input data x(t), to produce outputs

y(t), can be viewed and treated as a parameterized mapping:

9(t) = f (x(t),w) (7)

where w is the vector of weight parameters. In the case of the perceptron neural net with one

hidden layer and hyperbolic tangent activation function (Fig.2), Eq. (7) is expressed as:
g,(t) = Zw (tanh[2, wi,x, (1) + o) (8)

This capacity of feedforward artificial neural nets of representing nonlinear mappings can be

used to approximately model dynamic systems of the type:
x = f(x,u) 9

as long as f(.) is invariant in time (see, e.g., Chen and Billings, 1992). To do so, one has to

implicitly assume that it is possible to consider a system as in Eq.(9) as if it was approximated by a

discrete model like:

X(t+At) = f(x(t),x(t — At),...,x(t—nAt);u(t),u(t — At),...,u(t — n,At), w) (10)



which is of the type of Eq.(7) and where n,n,,At are to be adjusted together with the neural net

architecture and size, depending upon the problem treated and desired accuracy. Notice that At can
be treated as an extra component of the input to the neural net. What feedforward neural nets do in
this case is to learn the mapping of Eq. (10).

At this point is opportune to remember the similar situation that occurs when numerical
integrators are used and dynamic systems as in Eq.(9) are treated as discretized approximations,

like in Eq.(10).

SUPERVISED TRAINING: OPTIMAL LINEAR ESTIMATION PROCEDURE
A usual approach to solve the problem of supervised training of feedforward neural nets is to

minimize, with respect to the vector of weights w, the functional:
J(w) =1/2[(w—W)" P (w—W) + Z_;(y(t) — (@) wW) RO - f(x(t)w)] (1)

given the input-output data {x(t),y(t): t=1,2,....,L}, an a priori estimate W, and the weight matrices
P RYT).
In the proposed solution (Rios Neto, 1994), a linear perturbation is adopted to approximate the

functional of Eq.(11) in a typical ith iteration, imposing the condition that:
a(ly(t) - y(t,D)] = f, (x(t),W(i)[w(i) - w(i)] (12)

where, i =12,...,1;W(i) is the a priori estimate of w coming from the previous iteration, starting

with W(1) =W;y(t,i) = f (x(t),W(@)); f,(x(t),W(i)) is the matrix of first partial derivatives with



respectto w ; and (i) <1 is a parameter to be adjusted in order to guarantee the hypothesis of

linear perturbation. The resulting approximation of J(w) in Eq.(11J) is then:

J(w(i)) = 1/ 2[(w(i) —W)" P (w(i) — W) + Z_l:(z(t,i) — H(t,i)w(i)) "R (t)(z(t,i) — H(t,i)w(i))] (13)

where the following compact notation was adopted:
2(t,i) = a(i)[y(t) - y(t.D] + f, (x(0), W(i))w(i) (14)
H(ti) = £, (x(),W (D) (15)

The solution of minimizing the functional of Eq.(13) is formally equivalent (see, e.g.,

Jazwinski, 1970) to the following stochastic linear estimation problem:

W=w()+e (16)
2(t,i) = H(t,i)w(i) + v(t) (17)
E[e]=0,E[ee"]=P (18)
E[v(t)]=0,E[v(t)v" ()] = R(t) (19)

with € and v(t) not correlated and taken to have Gaussian distributions.



PROPOSED OFF LINE SOLUTION
Following closely Rios Neto (1994), a Kalman filtering algorithm is proposed for an off line

batch solution of problem of Egs. (16) to (19) :

W(i) = W + K(i)[z(i) — H{)W] (20)
K(i) = PHT()[H(@)PH () +R]™ (21)
W(i+1) = W(i), (i) < a(i+1) (22)

where all the values of t=1,2,...,L were considered to define the extended vector z(i), matrix
H (i) and the error vector v with covariance matrix R. The off line solution after iterations i=17,2,...,/

IS given by:

w=w(l), P(1) =[I —=K(DHH(D]P (23)

If «(i) is sufficiently small to disregard high order terms in the linearization and enough

redundancy exists in the training data, then unless of bad numerical behavior of the Kalman

filtering algorithm (Bierman, 1997) theory guarantees that P(l) is an approximation for the

estimation error covariance matrix, that is:

P(i) = E[(w - W)(w—-W)"]

For this off-line solution the following remarks apply:



(i) since the natural situation is to have components of the error v uncorrelated , then R is diagonal
and the recursive Kalman filtering algorithm can be used to process the vector z(l)
componentwize , avoiding the need of matrix inversion in Eq.(21) (Jazwinski, 1970);

(i) if it happens that a new data set of pairs {x(t),y(t)} is to be considered for network training, one
only has to consider the recursive nature of Kalman filtering algorithm and take as new a priori

information:

W« W and P« PWI);

(iii) though the backpropagation rule can be used to calculate the gradients in matrix H(i) (Chandran,
1994), the algorithm presented does not attain parallel processing;

(iv)due to Kalman filtering typical behavior one should consider adopting some kind of
factorization (Bierman, 1977) and or adaptive technique (Jazwinski, 1970; Rios Neto and Kuga,
1985) to avoid either numerical divergence or loosing the capacity of having the learning

distributed to all data.

SIMPLIFIED SOLUTIONS: PARALELL PROCESSING

Algorithms with the structure of a Kalman filtering, which coincides with that of a recursive
least squares, can be simplified to produce versions which preserve the local parallel processing
capability of artificial neural networks (Chen and Billings, 1992). Exploring this possibility the
author in a previous paper (Rios Neto, 1995) proposed approximated versions of the off line
stochastic optimal parameter estimation algorithm (Egs. (20) to (23)) and showed that even for the
most simplified version of the stochastic optimal linear estimation, Kalman filtering algorithm
leads to a local parallel processing algorithm still more general and sophisticated than the usual

Backpropagation.



To better fulfill the purposes of this paper, in what follows one summarizes these results

previously proposed by the author. Examining the equation bellow:

a()ly(®) - y(t.i)] = f, (x(O), WEANWE) - W]+ v(t) (24)

which is equivalent to Eq.(17), it can be seen that in the ith iteration the input-output data set can be

locally processed to get an estimate of the vector of weights w,, (i) of the Ith neuron in the kth layer

if one considers that:

(i) for connection weight parameters w, (i) of neural net layers forward or after the one where
processing is being done there are already available the estimated values W, (i) and associated
error e, (i) of known distribution;

(i) for parameters w,(i), correspondent to weights of connections do the other neurons in the same
layer, there is an a priori estimate W, (i) with error &¢(i) of known distribution which can be
taken as an approximation for w;

(iii) for the weight parameters  w, (i) correspondent to connections to the neurons in earlier layers
there is also an a priori estimate W, (i) with error €,(i) of known distribution which can be taken
as an approximation for w, (i) .

With the previous assumptions, the problem of getting an estimate for the vector of weights

w,, (i) of the Ith neuron in the kth layer is reduced to the local estimation problem in the ith

iteration and for =1,2,...,.L :

Wi (') = Wy (') + 8y (25)

a(ly(t) - y(t.i)] - f,, O W)W, () - W, ()] = f,, <O W)W, 0, O+ (£, (<O W(0)e, ()

10



+ £, (x(©.W(@))E () + f,,, (xX(©), W@DE 1) + V(1)) (26)

Or in a more compact notation and for all the data corresponding to t=1,2, ...,L:

Wy (1) = Wy, (i) + 8 (27)

Z, (1) = Hy (D)w (1) + v, (1) (28)

where &, is the correspondent partition of € in Eq.(16) and since in an ith iteration this problem

can be locally and recursively solved with the Kalman filtering algorithm, starting with P diagonal,

there results that the components of the errors e, (i), &(i) and &,(i) associated to parameters of
different neurons are not correlated.

Further approximations can be done to produce simpler local parallel processing algorithms by:
(iv) disregarding the off diagonal terms of the covariance matrix R, (i) of the error v, (i) (Eq.(28))
allows to process z,,(i) componentwize in Eq. (28), thus avoiding the need of matrix inversion;
taking this approximation corresponds to consider e, (i), & (i) and &,(i) in Eq. (26) not correlated
to each other and to v(t), R(t) diagonal, and to disregard off diagonal terms of the covariance

matrices of:

f,, X@.W(i)e, ), f, X)W, f, x().W30D))edi);

(v) disregarding the information on the level of accuracy in previous knowledge of

w, (i), w,(i) and w,(i), and taking these values as if they were:

11



w, (i) = W, (i), w, (1) = W, (i), w, (i) = W(i) (29)

what implies a further simplified version of Eq. (26):

a()ly®) - y(t.i)] = f,, (), W@w, () - &, ()] +v(t) (30)

and which combined with EQ.(27) results in the simplified estimation problem for the data

corresponding to t=1,2,...,L

W ()= Wi i)+ €4 (31)

z, (i) = Hy (w, (i) +v (32)

This last simplified version is still more sophisticated than the usual Backpropagation
algorithm, and can be shown to be the result of application of Newton’s method to the functional of
Eq.(13) when the approximation of Eq. (29) is considered.

ADAPTIVE SOLUTION: DISTRIBUTED LEARNING OF NEURAL WEIGHTS

The problem with least squares type of estimators, and with Kalman filtering in particular, is
that due to both algorithm bad numerical behavior and observation model errors, divergence
usually occurs as many data sets are processed. This is due to the fact that the algorithm “learns too
well the wrong information” (Jazwinski, 1970) loosing capacity of keeping learning as new data are
processed. What happens is an excessive and unrealistic decrease in the estimated dispersions of the
errors in the calculated estimates. This corresponds to the situation of having the matrix of

estimated covariances of the errors en the estimates with eigenvalues too close to zero.

12



To avoid this ill behavior and to try to keep a distributed and as much as possible uniform
capacity of learning, it is common to use forgetting factor type techniques or more effective
adaptive state estimation techniques like the one proposed by Jazwinski(1970) and modified by
Rios Neto and Kuga(1985).

To apply an adaptive procedure based on a criterion of statistical consistency to balance a priori
information priority with that of new learning information, the neurons connection weights
parameters in the problem of neural net supervised training need to be modeled as random walk

processes. Thus, in the ith iteration and for t=1,2,...,L-1:

w(i,t+1) = w(i,t) + 7(t) (32)

E[7(1)]=0, E[n(t)7 (1)]=Q(T)4, (33)

where ¢, is the Kronecker symbol and for the n, weight parameters:

Q(t) = diag[q; (t): j =12,...,n,] (34)

With this modeling approximation for the neural weights, learning from the th input-output data

pattern is transformed in the estimation problem:

W(i,t) = w(i,t) +e(i,t) (35)

2(t,i) = H(t,)w(i,t) + v(t) (36)

starting with €(i,1) =€, wW(i,1) =w(i) and for r=1,2,...,L..

13



To propagate estimates from t to t+1 Kalman filter predictor is used considering the dynamics

of Eq.(32) :
w(i,t +1) = W(i,t) (37)
P(i,t+1) = P(i,t) + Q(t) (38)

where P(i,t+1) = E[e(i,t +1)&" (i,t + )] and P(i,t) is given by the filtering algorithm:

P@i,t) =[1 - K(i,t)H(t,i)]P(i,t) (39)

where P(i,t) starts with P(i,]) = E[ee"]=P.
The adaptation is done by adjusting the noise n(t) dispersion, such as to keep statistical

consistency and to attain distributed learning:

FEIV; (t+1)] = H, (t+Li)[P@i,t) + Q)IH," (t +1i), 1<B=4, (40)

where j=1,2,...,m and g is to be adjusted close to 1 in order to have distributed learning.

This adaptive condition leads to the associated observation like condition , after some algebraic

manipulations and adoption of a compact notation:

2(t+1,0,8) = HO(t + 1,i)q(t) (41)

In order to use the same Kalman filtering algorithm the following associated estimation

problem is considered:

14



0=q(t)+e" (42)

29(t+Li,8) =H'(t+1i)q(t) +vi(t+2) (43)
E[e‘1=0, E[e%"]=1, (44)
E[vi(t+1)]=0, E[vi(t+)vi(t+D)]=R%*(t+1)=0 (45)

which is a problem with exact observations that can be processed with Kalman filtering as long as
one takes RY(t+1) in the limit as being zero (Freitas Pinto and Rios Neto, 1990). The solution
gives a G(t) which is closest to zero in magnitude. Whenever a ¢, (t) component is less than zero

it is disregarded and taken to be zero, since the condition of positivity has to be observed.

CONCLUSIONS

Possibilities of results and past experience already existent in stochastic optimal linear
parameter estimation were explored adapting Kalman filtering type of algorithms for feedforward
neural networks supervised training. Full non parallel processing algorithms suitable for off line use
as well as simplified parallel processing algorithms suitable for on line use which allows to
stochastically treat the accuracy of training data were developed. Exploring past experience with
state noise estimation in stochastic state observers, an automatic and adaptive approach was
proposed which is expected to prevent these Kalman filtering based neural net weight estimators of

loosing the capacity of distributing the extraction of information to all training data.

15



There is no reason for not expecting in neural nets training the same behavior stochastic optimal
linear estimation algorithms have had in other applications of systems identification. The versions
developed in this paper are all more sophisticated and realistic than the usual Backpropagation
algorithm. The price to be paid is more numerical complexity. This should be not a serious
limitation for off line applications. For on line, real time applications, the computational resources
already available for parallel processing may be enough to make competitive the use of the
simplified versions, specially in mechanical systems where typical times of response are not so

small.
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