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Abstract – A study of a three-axis stabilized satellite attitude control in geostationary orbit is presented. The analysis is 
based on a neural predictive approach using Kalman filtering algorithms. Optimization of a quadratic performance functional is 
used to determine the discrete predictive control actions. The control determination on a typical iteration is viewed as a 
stochastic optimal linear parameter estimation problem. Direct analogy with Kalman filtering algorithms allows the derivation 
of full non-parallel as well as approximated parallel processing algorithms. The satellite control system is based on a gyro 
device, which furnishes control torques on all three vehicle’s axes. Therefore, wheel speed control plus two-degree-of-freedom 
gyrotorquing supply the required moments to counterbalance attitude perturbations due to the solar pressure torques, limited 
orbit control thruster misalignment, or small initial satellite attitude misalignment. The results demonstrate that the proposed 
neural predictive scheme, at only one step-ahead prediction furnishes smooth control actions required to point and to maintain 
the satellite stabilized in the desired direction. Simulations are presented for a one-day satellite attitude control and for small 
initial attitude angles misalignment. 
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1 Introduction 
A neural predictive control scheme, using Kalman filter algorithm ([1], [2], [3], and [4]) is applied to a geosynchronous 
satellite attitude control problem. One case of great interest is related with the design of a double gimbaled momentum wheel 
attitude control system employed in the three-axis stabilization of a satellite attitude in geostationary orbit. This type of gyro 
device offers control torques about all three vehicle’s axes through wheel speed control and two-degree-of-freedom 
gyrotorquing. With an adequate wheel size and selected speed, momentum exchange permits cancellation of cyclic torques. 
This kind of system substitutes with advantages mass expulsion control systems in which continual thrusting and roll, pitch, 
and yaw sensors are required for accurate attitude maintenance. Specific satellite properties are assumed and appropriate 
control laws are calculated to counteract disturbance torques due to solar pressure and limited orbit control thruster 
misalignment. Applicability of the control scheme is tested and responses obtained considering various conditions for initial 
attitude misalignment and the presence of the cyclic disturbance torques. 

The proposed solution considers a one step-ahead neural predictive control approach. On this scheme a multilayer 
perceptron neural network is trained to learn and emulate the satellite attitude nonlinear dynamic behavior ([1], [5], [6], and 
[7]). Subsequently, a neural predictive control algorithm with Kalman filter structure is employed to obtain the control actions 
required to three-axis stabilize the attitude of a geosynchronous satellite in the presence of solar periodical perturbations and 
gravity gradient torques. For small initial satellite attitude misalignment, the applied methodology demonstrates that it 
furnishes precise control actions to smoothly position the satellite within the allowed orbit attitude accuracy requirements, and 
that it is also capable of maintaining the correct satellite attitude during a one-day attitude simulation. 

For the derivation of the predictive control algorithm, previous knowledge in using stochastic optimal parameter 
estimation to solve optimization problems ([8], [9], and [10]) is explored to derive a control scheme completely based on 
Kalman filtering algorithms. The feedforward predictive control actions determination is viewed and treated as a stochastic 
linear parameter estimation problem. This allows the derivation of full non-parallel as well as, approximated parallel 
processing versions of the predictive control algorithm. Those algorithms are formally equivalent to versions of Kalman 
filtering algorithms used for feedforward neural network training [11]. Analysis of these control algorithms shows that they 
converge to the optimized solution of performance indexes formulated to guarantee smooth and reference trajectory-tracking 
controls. 

2 Satellite Equations of Motion 
A satellite configuration typical of body-stabilized vehicle technology was selected and is illustrated in Figure 1. The three 
body axes x, y, and z are represented as well as the nominal wheel orientation. Satellite mass properties and inertia properties 
are listed on Table 1. Also included on Table 1 are the adopted model for the expected disturbance torque due to solar pressure 
and the attitude pointing accuracy requirements. Development of the equations of motion follows the usual treatment employed 
for a rigid body with internal momentum. The adopted body system of reference, with origin fixed on the center of mass of the 
satellite, rotates with respect to an inertial frame at the orbit rate, ω0 (7.28 x 10-5 rad/s). Nominal orientation of the double-
gimbaled wheel is schematically illustrated in Figure 2. Euler's equations for the rigid satellite and wheel are given by 
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Figure 1 – Satellite Configuration. 

	
  

	
  

 

Table 1 – Satellite Specifications and Disturbance Torques 

Satellite	
  

mass	
  
716	
  kg	
  

Moments	
  of	
  

inertia	
  
Ix	
  =	
  Iz	
  =	
  2000	
  N.m.s2	
  	
  	
  	
  	
  	
  	
  Iy	
  =	
  400	
  N.m.s2	
  

Attitude	
  

accuracy	
  
requirements	
  

Pitch	
  and	
  Roll	
  =	
  0.05°	
  	
  	
  	
  	
  Yaw	
  =	
  0.40°	
  

€ 

Tx = 2x10−5 1 − 2.0sinω0t( ) N .m 	
  

€ 

Ty = 10−4 cosω0t( ) N .m 	
  

Solar	
  

pressure	
  
torques	
  	
  

(t=0	
  at	
  6	
  am	
  

or	
  6	
  pm	
  
orbital	
  

position)	
  

€ 

Tx = − 5x10−5 cosω0t( ) N .m 	
  

	
  

€ 

T + G =
d h
dt

=
d h
dt

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ b
+ ω x h  (2.1) 

where T is the disturbance torque due to solar pressure and thrust misalignment, G is the gravity gradient torque, and h is the 
total angular momentum, including the wheel. The total angular momentum h is the sum of the angular momentum of the 
vehicle, hv, and the angular momentum of the wheel, hw, i.e., 

€ 

h = hv + hw  (2.2) 

Considering the unit vectors i, j, k along the body principal axes x, y, z the angular momentum components of the 
vehicle are given by 

€ 

hv = I xωx i + I yωy j + I zω z k  (2.3) 

Referring to Figure 3, the wheel momentum components are 

€ 

hwx = cosδ sinγ hw  (2.4a) 

€ 

hwy = − cosδ cosγ hw  (2.4b) 

€ 

hwz = − sinδ hw  (2.4c) 

where δ, γ are the roll and yaw gimbal angles, respectively. Combining these expressions leads to 

€ 

Ix ωx

.
= Tx + Gx + δ

.
sinδ sin γ hw − γ

.
cosδ cosγ hw − cosδ sin γ h

.
w

− ωy I zωz − sinδ hw( ) + ωz Iyωy − cosδ cosγ hw( )
 (2.5a) 

€ 

Iy ωy

.
= Ty + Gy − δ

.
sinδ cosγ hw − γ

.
cosδ sin γ hw + cosδ cosγ h

.
w

− ωz Ixωx + cosδ sin γ hw( ) + ωx I zωz − sinδ hw( )
 (2.5b) 

€ 

I z ωz

.
= Tz + Gz + δ

.
cosδ hw + sinδ h

.
w

− ωx Iyωy − cosδ cosγ hw( ) + ωy Ixωx + cosδ sin γ hw( )
 (2.5c) 
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Figure 2 – Double-Gimbaled Control System. 

	
  

Figure 3 – Wheel Angular Momentum Components. 
	
  

The angular velocities are related according to the equation 

€ 

ω = ω 0 + ωψθφ 	
   (2.6) 

where ω , ω 0, and ω ψθφ represent the angular velocities: absolute, orbital and relative. Adopting the sequential Euler angles 
rotations of yaw ψ, pitch θ, and roll φ to move from the local vertical axes system to the body axes system, Eq. 2.6 can be 
expressed as 

€ 

φ
.

θ
.

ψ
.

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=
1
cθ

cθ sφ sθ sθ cφ
0 cφ cθ − sφ cθ
0 sφ cφ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

ωx + ω0 sψ cθ
ωy + ω0 cψ cφ + sψ sθ sφ( )
ωz + ω0 sψ sθ cφ − cψ sφ( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 (2.7) 

In the above equation, the letters “s” and “c” stand for the trigonometric functions sine and cosine, respectively. The set of 
equations 2.5a, 2.5b, 2.5c, and equations 2.7 are the non-linear ordinary differential equations that describe and governs the 
satellite attitude dynamic behavior. For the application of the proposed neural predictive control method, an artificial 
feedforward neural network must identify the plant, which is represented by this set of differential equations. 

The gravity gradient torque components are given by [12] 

€ 

Gx = 3
2
ω0
2 sin2φ cos2θ I z − Iy( )  (2.8a) 

€ 

Gy = 3
2
ω0
2 cosφ sin2θ I z − Ix( )  (2.8b) 

€ 

Gz = 3
2
ω0
2 sinφ sin2θ Ix − Iy( )  (2.8c) 

3 Neural Predictive Control Algorithms 
On this paragraph, the neural predictive control methodology is derived. Initially, consider the problem of controlling a 
dynamic system expressed by a set of n non-linear differential equations of the form 

€ 

˙ x = f x,u( )  (3.1) 

For such a system, discrete time nonlinear input-output models can be obtained to predict the approximate system responses 

€ 

y t j( ) = f y t j−1( ),…, y t j−ny
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ; u t j−1( ),…, u t j−nu( )⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟  (3.2) 

where the time at the instant tj is given by 

€ 

t j = t + jΔt . 

The adopted neural predictive control scheme uses a feedforward neural network, which can uniformly and with the 
desired accuracy learn a mapping such as that expressed by Eq. (3.2) [13] to model the dynamic system represented by Eq. 
(3.1). This internal model neural network then provides the response model that can be used to determine smooth and reference 
trajectory tracking control actions by minimizing a predictive quadratic index of performance of the type usually adopted in 
predictive control schemes ([14] and [15]). Consider then the performance index defined as 
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€ 

J = 1
2

y r t j( ) − ˆ y t j( )[ ]
T

j=1

n

∑ Ry
−1 t j( ) y r t j( ) − ˆ y t j( )[ ] +

1
2

u t j( ) − u t j−1( )[ ]
T

j=0

n−1

∑ Ru
−1 t j( ) u t j( ) − u t j−1( )[ ]  (3.3) 

€ 

y r (t j ) is the desired reference response; n defines the horizon over which the tracking errors and control increments are 
considered; Ry(tj) and Ru(tj) are positive definite weight matrices;

€ 

ˆ y (t j )  is the output of the feedforward neural network trained 

to approximately model the dynamic system of Eq. (3.1). Therefore, the dynamic system modeled by Eq. (3.1) can be formally 
represented by 

€ 

ˆ y t j( ) = ˆ f ˆ y t j−1( ),…, ˆ y t j−ny
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ; u t j−1( ),…,u t j−nu( ); ˆ w ⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟  (3.4) 

where 

€ 

ˆ w  are the neural network weight parameters adjusted or estimated along training. 

Thus, in summary, for solution of the resulting neural network predictive control problem it is needed: 

(i) to choose a feedforward neural network with appropriate architecture and size, which in a process usually 
involving both off line and on line supervised training can learn from the dynamic system input output data sets 
how to represent the mapping of the nonlinear discrete model of the dynamic system; 

(ii) to solve with respect to the control actions, on line and in a small fraction of 

€ 

Δt  the nonlinear programming 
problem of minimizing an objective function constraining  smooth and reference trajectory tracking control 
actions, as that given by Eq. (3.3), and subjected to the constrains expressed by Eq. (3.4). 

3.1 Kalman Filtering Integrated Solution 
Kalman filtering algorithms can be used to solve the problem of supervised training of the feedforward neural network used in 
the predictive control scheme. Versions of this algorithm with different levels of approximation can be found in the literature. 
Those versions may vary from full non-parallel algorithms, mostly suitable for off line use, to simplified parallel processing 
algorithms [11] for on line applications. 

Exploring previously developed and related results ([8], [9], and [10]), a method is proposed where the problem of 
determining the predictive control actions is also treated as one of stochastic optimal linear parameter estimation. 

The method starts by assuming that the problem of control determination by minimization of Eq. (3.3) can be viewed 
in a more general stochastic framework as a stochastic parameter estimation problem expressed as 

€ 

ˆ y t j( ) = ˆ f ˆ y t j−1( ),…, ˆ y t j−ny
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ; u t j−1( ),…,u t j−nu( ); ˆ w ⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟  (3.5) 

€ 

0 = u t j−1( ) − u t j−2( ) + vu t j−1( )  (3.6) 

€ 

E v y t j( )[ ] = 0; E v y t j( )v y
T t j( )[ ] = Ry t j( )  (3.7) 

€ 

E v u t j( )[ ] = 0; E v u t j( )v u
T t j( )[ ] = Ru t j( )  (3.8) 

where 

€ 

j =1,2,…, n ; the output of the neural network

€ 

ˆ y (t j )  is represented by Eq. 3.4; 

€ 

ˆ y (t j−1 ),…, ˆ y (t j−ny ) and 

€ 

ˆ u (t j−1 ),…, ˆ u (tt−nu ) are past values of the system response and control action; the errors 

€ 

v y (t j )  and 

€ 

vu (t j )  are of 

uncorrelated components as well as uncorrelated for different values of 

€ 

t j . A first consequence of this more general stochastic 

framework in the treatment of the problem is that the weight matrices, Ry and Ru, in the objective function (Eq. (3.3)) have now 
the meaning of covariance matrices. This certainly facilitates their definition. 

In order to re-iteratively treat the problem represented by Eqs. (3.5) and (3.6) as one of linear parameter estimation, 
one takes in an ith iteration the linearized approximation of Eq. (3.5), that is 

€ 

α i( ) y r t j( ) − y t j , i( )[ ] =
∂ˆ y t j( )
∂u tk( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

u tk, i( )
k=k0

j -1

∑ u tk, i( ) − u tk, i( )[ ] + v y t j( )  (3.9) 

where 

€ 

k0 = max [ 0, ( j − ny − nu )] . The parameter 

€ 

0<α ≤ 1 must be adjusted to guarantee the linear perturbation 

approximation hypothesis. The indicated partial derivatives are to be calculated using the back-propagation rule in the 
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feedforward neural network that approximates the dynamic system response model [16]. Those observation type of conditions 
are then processed taking as a priori information, based on conditions of Eq. (3.6), and consistent with the linearized 
approximation in Eq. (3.9), the following: 

€ 

α i( ) ˆ u t−1( ) − u tl , i( )[ ] = ˆ u tl , i( ) − u t l , i( )[ ] + v u
k=0

l

∑ tk( )  (3.10) 

where l=0,1,...,n-1 and i=1,2,...,I; 

€ 

ˆ u t−1( )  is the estimated solution from last control step; 

€ 

α(i )←α (i +1) ; 

€ 

u (t l , i +1) = ˆ u (tl , i ), the approximated estimated value of 

€ 

u l  in the ith iteration; for i=1 an estimate or extrapolation of the 
last control step is to be used. 

For j=1,2,...,n and l=0,1,...,n-1,the problem given by Eqs. (3.9) and (3.10) is one of stochastic linear parameter 
estimation. In a more compact notation, defining 

€ 

U t, i( ) ≡ uT t1, i( ) :… : uT tn−1, i( )[ ]; ˆ U l t−1( ) ≡ ˆ u t−1( )  (3.11) 

it can equivalently be expressed as 

€ 

α i( ) ˆ U t−1( ) − U t, i( )[ ] = U t, i( ) − U t, i( ) + Vu t( ) (3.12) 

€ 

α i( )Z u t, i( ) = H u t, i( ) U t, i( ) − U t, i( )[ ] + Vy t( )  (3.13) 

where the meanings of the compact notation variables are obvious by comparing  Eqs. (3.12) and (3.13) with Eqs. (3.10) and 
(3.9), respectively. Using the Kalman filtering estimator, an algorithm for estimating the control actions is obtained which, for 
an ith typical iteration is given by 

€ 

ˆ U t, i( ) = U t, i( ) + α i( ) ˆ U t−1( ) − U t, i( )[ ] + K t, i( )α i( ) Z u t, i( ) − H u t, i( ) ˆ U t−1( ) − U t, i( )[ ]{ }  (3.14a) 

€ 

K t, i( ) = Ru t( ) Hu t, i( )( )
T
Hu t, i( )Ru t( ) Hu t, i( )( )

T
+ Ry t( )[ ]

−1

 (3.14b) 

€ 

ˆ R u t, I( ) = Iu − K t, I( )H u t, I( )[ ]Ru t( )  (3.14c) 

€ 

U t, i +1( ) = ˆ U t, i( )  

€ 

ˆ U t( ) = ˆ U t, I( )  

€ 

α(i )← ⎯ ⎯ α (i +1)  (3.14d) 

where Ru(t), Ry(t), and

€ 

ˆ R u t, I( )   are the error covariance matrices of Vu(t), Vy(t), and 

€ 

[ ˆ U (t , I )−U(t )] , respectively; Iu is an 

identity matrix. Algorithm convergence is guaranteed ([2] and [3]). 

An approximated version of the algorithm, which can be paralleled processed for each value of l=0,1,...,n-1, can now 
be obtained. To obtain the simplified version, the values of 

€ 

U k t, i( ) , 

€ 

k ≠ l , in Eq. (3.13) are approximated by 

€ 

U k t, i( ) . From 
these approximations results a problem which can be locally processed, and which can be expressed as 

€ 

α i( ) ˆ u t−1( ) − u tl , i( )[ ] = u t l , i( ) − u t l , i( ) + Vul t( )  (3.15) 

€ 

α i( )Z u t, i( ) = H l
u t, i( ) u t l , i( ) − u t l , i( )[ ] + Vy t( )  (3.16) 

Use of Kalman filtering to solve this problem leads to 

€ 

ˆ u t l , i( ) = u tl , i( ) + α i( ) ˆ u t−1( ) − u tl , i( )[ ] + K t, l, i( )α i( ) Z u t, i( ) − H l
u t, i( ) ˆ u t−1( ) − u t l , i( )[ ]{ }  (3.17a) 

€ 

K t, l, i( ) = Rul
−1 t( ) + H l

u t, i( )( )
T
Ry

−1 t( )H l
u t, i( ){ }

−1

H l
u t, i( )( )

T
Ry

−1 t( )  (3.17b) 

€ 

ˆ R ul t, I( ) = Iu − K t, l, I( )H l
u t, I( )[ ]Rul t( )  (3.17c) 

€ 

ˆ u t l( ) = ˆ u t l , I( )  

€ 

α(i )← ⎯ ⎯ α (i +1)  (3.17d) 

Convergence to a smooth control, which tracks the reference trajectory, is also guaranteed ([2] and [3]). 
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4 Satellite Attitude Control Simulation Results 
To simulate the geosynchronous satellite attitude control, considering the attitude perturbations represented by periodical solar 
pressure torques and gravity gradient terms, using the proposed methodology of neural predictive Kalman filtering, it is 
initially required to identify the plant by an artificial feedforward neural network. The first order differential equations that 
describe the plant's attitude are given by Eqs. 2.5 and 2.7. The gimbal angle rates, 

€ 

δ
.

(roll), and 

€ 

γ
.
(yaw), and the wheel angular 

momentum rate, 

€ 

˙ h w , were chosen as control parameters. The control vector is then defined as 

€ 

u(t ) = δ
.

t( ) γ
.

t( ) h
.

w t( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

 (4.1) 

The neural predictive control algorithm was then employed to obtain the control laws to position and maintain the satellite 
attitude stabilized in the desired direction considering a simulation time interval of one day. 

A feedforward multilayer perceptron neural network with an input layer of 12 neurons, a layer of 20 hidden neurons, 
and a layer of 9 output neurons was chosen to emulate the plant's dynamics behavior. The neural network is fully connected 
with a bias of +1 added to each layer. The neural network has the following parameters in the input layer 

€ 

x(t ) = φ
.

t1( ) θ
.

t1( ) ψ
.

t1( ) φ t1( ) θ t1( ) ψ t1( ) δ t1( ) γ t1( ) hw t1( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

T

 (4.2) 

The parameters update frequency Δt was chosen as one second (1.0 s).  This update frequency is compatible with the system 
time of response and demonstrated to be adequate for satisfactory solution of the problem. Neural network training and test 
patterns were then created by numerical integration of Eqs. 2.5 and 2.7, considering the one-second integration time interval. 
Initial conditions for the state and control parameters were conveniently chosen according to the state space where the plant 
were supposed to operate. The neural network was then trained until mean output quadratic errors of the order 5x10-4 were 
obtained. 

The geosynchronous satellite attitude pointing problem and attitude maintenance was then solved. For orbit simulation 
and as initial condition, it was considered that the satellite was already inserted in the correct orbit altitude but with attitude 
pointing errors of the order of magnitude of one degree in all three axes. For the simulation results presented on this paper it 
was considered that the initial pointing errors were:  roll φ and pitch θ with -1°, and yaw ψ with +1°. All three rate angles were 
supposed to have zero initial angular velocities. The control double-gimbaled system was then required to make the necessary 
attitude corrections to put the satellite within the allowed orbit attitude accuracy requirements (pitch and roll of ± 0.05°, and 
yaw of 0.40°, Table 1). 

The satellite attitude simulation was then performed by numerical integration of Eqs. 2.5 and 2.7. The control actions 
required to point the satellite in the desired direction were obtained from the predictive neural algorithm, Eqs. 3.17. Notice that 
this algorithm requires that a reference trajectory be specified. The Euler angles and their rates were chosen as the reference 
parameters to be specified. This choice had as purpose to restrict Euler angle rates to small values, which still allowed for small 
angle corrections but with very smooth maneuvers. The reference trajectory was set as 

€ 

φ
.

r t( ) = θ
.

r t( ) = ψ
.

r t( ) ≡ 0  (4.3) 

€ 

φr t( ) = θ r t( ) = ψr t( ) ≡ 0  (4.4) 

This choice resulted in control actions that positioned the satellite with 
smooth trajectory maneuvers, without overshooting and attitude high 
frequency maneuvers that usually result from the use of typical neural control 
systems. Simulation results are presented on Figures 4 through 10. The neural 
predictive control algorithm was employed with the restriction of only one-
step ahead prediction with the update frequency of 1 Hz. 

On Figure 4 it is shown the evolution with current time of the three-
axis satellite attitude Euler angles. The choice of the reference trajectory 
combined with setting of the predictive control algorithm parameters (α) 
allowed for very smooth maneuvers in all three-axis without overshooting. 
Notice from the figure that the initial satellite point maneuver takes 
approximately 300 seconds to be completed. After this period of time, all 
three attitude angles are inside the precision bandwidth (dotted lines). 

 

Figure 4 – Satellite Attitude 



10th Brazilian Congress on Computational Intelligence (CBIC’2011), November 8 to 11, 2011, Fortaleza, Ceará Brazil 
  © Brazilian Society on Computational Intelligence (SBIC)	
  
	
  

	
  
	
  

7	
  

Figures 5 and 6 present the control angles laws as functions of the current time that were obtained from the neural 
predictive control algorithm. The graphs detail the control actions required to perform the initial satellite-pointing maneuver. 
After the pointing maneuver completion, all three controls remain close to zero, but with enough magnitude to maintain the 
satellite stabilized on the desired attitude. Figures 7 and 8 present the double-gimbaled angles and wheel angular momentum 
variation with current time, for the initial pointing maneuver. The initial maneuver requires approximately 1° roll and yaw 
double-gimbaled angles displacements. The initial variation of the wheel angular momentum is small, of the order of 0.05 
N.m.s. 

Figures 9 and 10 show the results for a one-day satellite attitude simulation. The double-gimbaled angles (roll δ and 
yaw γ) and wheel angular momentum hw are plotted as function of the current time t. Apart from the initial point maneuver, the 
three variables related to the satellite control parameters, have a periodical variation with a sine shape format. The two angles 
have maximum amplitude of 1.5 degrees, and the angular momentum a variation of ±1.5 N.m.s. 

 

Figure 5 – Roll and Yaw Double-Gimbaled Controls. 

 

Figure 6 – Wheel Angular Momentum Control. 

 

Figure 7 – Pointing Maneuver: Double-Gimbaled Roll and 
Yaw Angles. 

 

Figure 8 – Pointing Maneuver: Wheel Angular Momentum 
Variation. 

 

Figure 9 – Attitude Stabilization: Double-Gimbaled Roll 
and Yaw Angles Variation. 

 

Figure 10 – Attitude Stabilization: Wheel Angular 
Momentum Variation. 
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5 Conclusions 
The problem of controlling and stabilizing a geosynchronous satellite in the presence of periodic solar pressure torques and 
gravity gradient components is presented. The satellite was supposed to be already inserted in the desired orbit but with initial 
small attitude angles. The solution for the satellite point problem and one-day orbit stabilization was obtained by a neural 
predictive control scheme. 

The use of Kalman filtering as a tool to derive neural predictive control algorithms was explored. Viewing the 
solution of the optimization problem of control action determination as one of stochastic parameter estimation reduced this 
problem to one formally equivalent to that of estimating the weights in feedforward neural network supervised training. This 
allowed a problem solution by employing Kalman filtering algorithms. 

Two versions of algorithms were developed for the control determination: one where the approximation is the 
iterative approach due to linearization of equations, and where local parallel processing is not attained. The other one was an 
approximated version, but which attains local parallel processing and is intended for real time control schemes. 

The results for one-day satellite attitude simulation demonstrated that the proposed methodology is capable of dealing 
with control problems of this type. The results show that a smooth control was obtained from the control algorithms. 
Differently from usual neural schemes, the satellite attitude corrections were made with three-axis maneuvers, without 
inducing overshooting and satellite shacking. 

Although the algorithm can be used with a multiple steps horizon prediction, the application of only one step-ahead 
scheme was used and demonstrated to be adequate for the problem solution. Also, although small initial attitude angle 
corrections, of the order of ±1 degree was considered in this analysis, it should be pointed out that if required, and with 
adequate neural network training, larger values of angle corrections are possible. 
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