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Abstract—A formulation used to determine the time-optimal geomagnetic attitude maneuvers subject to
dynamic and geometric constraints is proposed in this paper. This was obtained by a direct search
procedure based on a control function parametrization method, using linear programming to obtain
numerical suboptimal solutions by linear perturbation. Due to its characteristics it can be used in small
computers and to generate computer programs of general application. The dynamic modeling, the
magnetic torque model and the suboptimal control procedure are presented. Simulation runs have verified
the feasibility of the formulation thus derived and have shown a notable improvement in performance.

1. INTRODUCTION

The interaction between the onboard coil magnetic
moment and the geomagnetic field have been
much used to generate control torques. Shigehara [1]
developed a switching function, derived from the
asymptotic stability condition, for geomagnetic atti-
tude stabilization of a rigid satellite. This control
law is applicable for any desired spin-axis orien-
tation and orbital condition. Tossman[2] con-
tributed with an approximate form for a switching
function which led to a one-dimensional TPBVP
(Two-Point Boundary-Value Problem) approximate
optimal maneuver. Junkins et al.[3], motivated
by the work of Tossman, developed a nonlinear
bang-bang switching function using Pontryagin’s
Principle to solve time-optimal maneuver formu-
lation.

This paper presents a new time-optimal geomag-
netic maneuver formulation, using a method for
numerical solution of suboptimal control problems,
in which the control is taken as a functional
dependent on time and a finite number of
parameters [4].

The format of this paper is as follows. In
Section 2 the satellite dynamic model is described.
In Section 3 we present the geomagnetic torque
modeling where considerations about spin-stabilized
satellite are worked out. In Section 4 we present
the suboptimal control procedure used. The model
simulated is given in Section 5 illustrating our
main result. Concluding remarks are offered in Sec-
tion 6.
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2. SPIN-STABILIZED SATELLITE DYNAMIC MODELING

Consider the inertial frame OXYZ shown in Fig. 1,
with its origin at the Earth’s center O, the Z axis
along the Earth’s rotation axis, and X and Y lie on
the equatorial plane of Earth with the axis X directed
toward the Vernal Equinox y. The coordinate frame
Oxyz is associated with the vehicle such that z is
situated along the axis of symmetry (spin axis) and x
lies in the inertial plane (X, Y). Note that the spin axis
orientation, in inertial system, is given by
k = [cos d cos a, cos ¢ sin a, sin 6] where a is the right
ascension and ¢ is the declination (see Fig. 1).

Usually, spin-stabilized satellites have passive
nutation dampers which serve to dampen nutations
rapidly, so the total angular momentum in system
Oxyz is assumed to be parallel to the spin axis,
defined by

H=IL¢k m

where I,(>1,=1,) is the moment of inertia around
the spin axis and ¢ is the spin rate colinear with the
axis k. Newton’s law is written (dH/d¢)=T, in
which T is the torque acting normal to the spin axis,
thus

T= L[k + $(@ x K)] @
where
® = —8i+d cosdj+ d sin 6k (€))

is the angular velocity of coordinate frame Oxyz.
Combining these equations, we finally obtain the
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Fig. 1. Reference frames OXYZ and Oxyz.

approximate rate used for slow maneuvers of the spin
axis [5]

&= T,/(I,$ cos ) @)
8 = T,/(1,¢) Q)

where T, and T, are the components of torque in
system Oxyz.

3. GEOMAGNETIC TORQUE MODELING

The torque that executes the maneuver is generated
by the interaction between the coil magnetic moment
m and the geomagnetic field B, given by [6]

T=mxB 6)

where m = p,,mk is the satellite dipole moment with
constant magnitude m and polarity p,,(—1,0, 1).
The geomagnetic field is modeled by the centered
dipole (see Fig. 2). It is along an axis inclined at
¢ =11.4° to the geographic polar axis. , and 0, are
the longitude and the Sideral Time of Greenwich,
respectively. The orbital frame Ox,y,z, is fixed with
respect to orbital plane; z, is along the orbital normal
line and x, is along the longitude of the ascending
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Fig. 2. Orbital coordinate frame.

node. In turn, we used in this work the instantaneous
components of control geomagnetic torque[7], in
orbital frame, given by

T,=m(k, x B,) @)
where
B, = [(3M*,/r*)(sin x cos x)
+ (M*x,/r*)(3 cos? y — 1),
(M*y,/r*)(3sin’ x —1)
+ (BM*x,/r¥)(sin x cos ), —M*z,[r’] (8)

represents the geomagnetic field induction and k, is
the spin axis orientation, both in orbital frame;
X =wp+v and it is the angle between the longitude
of the ascending node and the satellite radius vector;
w, is the argument of perihelion; v is the true
anomaly; r is the distance from the Earth’s center and
(M*x,, M*y,, M*z,) are the components of the
geomagnetic induction in orbital frame.

It is important to remark upon the following
considerations for spin-stabilized satellites with orbits
of periods much smaller than 1 day: (i) the spin axis
orientation is sensibly invariant during one interval of
integration, i.e. one orbit; (ii) to neglect the nodal
regression and the apsidal rotation during the same
time (the orbit is “frozen™); (iii) to take an average of
the geomagnetic dipole component over the time
considered (period < 24 h).

4. SUBOPTIMAL CONTROL PROCEDURE

A first order direct search procedure [4] for par-
ameter optimization in the numerical solution of
dynamical systems control problems is used in this
work. The optimal control problem to be treated is
to find the control function u(¢), in the interval [t,, ],
so as to minimize the index of performance and to
comply the following constraints

IP = IP(x;, t;) ©)
X =f(x,u,t) (10)
M(x, 1) =0 (1)

where x is the n x 1 state vector; x(¢,) and ¢, are given;
x; is the final state corresponding to final ¢;; u is the
g x 1 control vector; and M(-) is the m x 1 vector
constraint function of final conditions on state and
time: /P is the index of performance.

Supposing that, whenever necessary, the previous
extension was made, and if u(¢) is substituted by
u(a, t) or, in a general form, by u(a, x, t), the problem
becomes

IP = IP(x;, a,) (12)
X=f(x,a,a,,...,a,_,,1) (13)
M(x;,a,) =0 (14)
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Table 1. Simulated model

1, = year 1980, day 350, hour 12, min 0 (GMT)
M*=28.1x 10" Wb - m?

¢ =12rpm

I,=8.1kg m?

Altitude = 1000 km (circular orbit)

i = Inclination = 30°

Q = Arg. of ascending node = 40.9°

{ = Orbital period = 100 min

where x(t;) and ¢, are given or defined as the function
of the parameters to be optimized; a is the g x 1
vector of the parameters to be optimized and a, is the
final time.

4.1. Typical iteration associated problem

From a linear perturbation of eqns (12)-(14),
results obtained are:

AM = (0M [0x;)(0x;/0a) Aa + (0M |da,) Aa, (15)

AIP = (OIP[dx;)(0x;/0a) Aa + (OIP/0a,) Aa,. (16)
To satisfy the criterion of getting closer to the
suboptimum solution with sufficiently small

increments, it is understood that
AM =aM, —-1<a<0 17)
AIP > b|IP|, b <0 (18)

where the condition given by eqn (18), aside from
contributing to small increments, means that it is
not always possible to get closer to constraint
satisfaction and yet to decrease the index of perform-
ance.
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To choose the problem associated with a typical
iteration, which will lead to a scheme for the determi-
nation of the search increment, two aspects have
to be considered. First, in the limits given by
eqn (18), AIP should be minimized. Second, to
increase convergence speed it is necessary to
move along a direction which is close to constraint
gradient direction, i.e. a norm of the increment
vector Aa should be minimized. Based on these
considerations, and from eqns (15)—(18), the associ-
ated optimization problem is taken as the minimiz-
ation of

g
G=Y WlAa|+WAIP, W>0,W,>0 (19)
i=1

subject to
(0M [0x;)(0x;/0a) Aa + (0M [0a,) Aa,=aM (20)
(8IP [0x) (0x¢/0a) Aa + (OIP[da,) Aa, > b|IP|.
@1
To formulate the equivalent problem of minimiz-

ing in the usual form of linear programming [4], the
following change of variables is made

S,-?O, sg+i>09 i=1’2s-~'ag

22)

Aa;=5;—Sg 44

where s,,,, will be introduced to eliminate the
inequality sign of eqn (21) and will be used in
eqn (19) multiplied by a positive weight to replace
W AIP.
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Fig. 3. Time histories of p,,, &, 6 (initial control).
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5. MANEUVER OPTIMIZATION—FORMULATION
AND SIMULATION

The problem formulation consists in suggesting an
initial control law for geomagnetic attitude maneu-
vers and through procedure (Section 4) to obtain a
geomagnetic maneuver with an optimum criterion.

As an initial law, we adopted the switching
function developed by Shigehara[l] having as a
criterion the asymptotic stability condition.

Using the suboptimal iterative procedure, with
respect to final time, we obtain the optimal maneuver
by parameters (given for the switching points in
initial control law) optimization.

5.1. Initial maneuver law

Shigehara [1] developed a switching function to
control the spin axis orientation. The desired state H,
in terms of angular momentum, can be expressed as
H; = I, ¢k;, where K; represents the desired direction
of the spin axis. The difference between H; and H is
considered as the error vector, E=H;—H. The
objective is to reduce E to zero. In turn, assuming p,,
to act in a bang-bang manner [8], the switching

function S is defined as
S=E-'(k xB) (23)

where the control criterion to govern the polarity of
D, is expressed as
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If the polarity of the dipole moment is selected
according to the sign of the switching function, the
magnitude of error always decreases. Therefore, the
desired orientation can eventually be achieved from
any initial state.

To illustrate the initial control law, derived above,
the same model simulated (see Table 1) by Shigehara
will be adopted.

The objective is to find the sequence of switching
points in order to maneuver from the initial state
(;=130.9°, 6,=30°) to the desired final state
(oy = 310.9°, 6;= 60°).

The simulation indicates the maneuver final time,
t; = 24 h, the same result obtained by Shigehara. The
history of maneuver is displayed in Fig. 3.

Take note that the singularity problem will happen
when the declination will be equal to § = 90° [see eqn

@]

5.2. Time-optimal geomagnetic maneuver

In this section, we used the switching points (given
by initial control) as parameters to be optimized
through suboptimal procedure. The optimization
problem of a generic form [9] to be treated is:

To minimize

Pm=+1, when S >0
Pm=—1, when S <0. 24)
2 T L T T T
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Fig. 4. Time histories of p,,, «, § (optimal maneuver).
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M (xp, ) = x,(t) —x;, =0

M, (xg,, ) = X, (t) — x;, =0 (26)

where x(#;) and ¢ are given, x; is the final state
corresponding to the maneuver final time # and
H=16.

After application of iterative procedure, the final
maneuver time obtained is #=21h; ie. it was
reduced approx. 12%.

Beyond this, in accordance with Fig. 4, the optimal
maneuver obtained is different than the maneuver
given by initial control.

Take note that a control pattern weighted halfway
between the switching points, such as a pulse, tri-
angular, or sine wave, would give faster control than
the rectangular pattern [1].

6. CONCLUSIONS

A new formulation for obtaining optimal time
geomagnetic maneuvers by a direct search procedure
has been presented. The understanding and facility of
implementation of this procedure dispenses with
treatment necessity and the explict use (and, there-
fore, the complexity) of necessary conditions of
optimization, making the utilization of the results
accessible to non-specialists in the area of optimal
control theory of dynamic systems. It is concluded
that the procedure is a good choice for optimization
of this type of dynamic problems.

To eliminate singularities (present in our work at
6 = 90°) and to avoid the lack of numerical precision,
it is proposed that one represent the “direction cosine
matrix” by using the four Euler parameters
(Quaternions).

Based on these factors, and having in view the
satellite onboard computation recourses used today,
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it is suggested that this new formulation be employed
to obtain time-optimal geomagnetic attitude
maneuver of spin-stabilized satellites.
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