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Abstract.

This work presents the development of a state estimator for dynamic systems

exploring the dual function existing between state estimation and optimal control prob-
ems. An estimater algerithm similar to the Extended Kalman Filter results to be used
in real-time nonlinear systems which can recursively be approximated by linear systems.
The original estimation problem is transformed into an equivalent one of virtual con-

trol, This control problem is then used to gencrate and adaptive,

locally convergent al

gorithm where, instead of full state estlmatlon, one has to estimate just a control
vector with smaller dimension than,or, in the worst case, the same dimension as the state

vector.Thecontrorformulationallowsdiffcrentcontrol structures

and different con-

vergence acceleration criteria.Two control structures and three criteria are tested in this

exploratory phase. The algorithn is

implemented in a digital computer to estimate

the orbit of a low Earth orbit satellite under simulated conditions. Numerical results
are presented for -a test case considering critical initial values for the estimator and

observations by three Earth stations.

Keywords.

1. INTRODUCTION

The situation of lack cf knowledge about the sys-
tem dynamic represents a very common problem in

state estimation of multivariable systems. Tn this

case, the dynamic model adopted for the estimator
is only-a crude approximation of reality and, as a
consequence,. unmodelled effects, mostly for non-
linear systems, can cause divergence of the esti-
mates. In order to avoid divergence, error compen
sation te;hnxques are usually employed with dif-
ferent versions of the Kalman Filter (e.g. Maybeck,
1979; Jazwinski, 19:0 Gelb et al., 1974). These -
techniques geporally explore the information giv-
en by the observation residues to either directly
estimate the unmodelled effects (e.g.Tapley and
Ingram, 1973; Cruz and Rios Neto, 1980: Rios Neto
error
covariance matrix to keep the capability of the
estimator to extract information from the new -
cbservations {e.g. Jazwiuski, 1505; Rius Weiv and

Kuga, 1981, 1982, 1985).

This exploratory work presents a new alternative
‘scheme for the state estimation problem, specially
for nonlincar systems. The duality between the
functions of estimation and optimal control is
explored to transform the original estimation prob
em into one of tracking the observations with a .
virtual control., The key idea is that, indepen-
dently of. the dynamic model for the estimator, if
the system is completely controllable and observa
ble, one can choose.a desirable control action to
drivé the system towards a region defined by the
observations in a finite time interval. Vithout
the need of increasing the number of estimated

" variables, the observation residues are used to

estimate the virtual control necessary to undate

"the estimate of the state. Besides that, the vir-

tual nature of the tracking control allows the
possibility of imvosing conditipns of control-
lability to better extract the information con-
tained in the observations (Rios Nete and Fleury,
1984; 1985; Fleury,1985). Therefore, the proposed
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Kalman filtering, Optimal control.

estimator is indicated for situations where there is a
great lack of knowledge about the system dynamics,
but there is a high local level of information in

the observations.

Preliminary tests of the proposed estimator were
done under digitally simulated conditions for a
critical problem of real-time orbit estimation
of a low altitude artificial satellite. Results
are shown to be satlsfactory for this exploratory
phase of procedure,

2,  PROPOSED PROCEDURE

The problem to be solved is the state estimation
of a multivariable dynamic system of the type:

“§ =BG & Fe) « T wle), (1)

y(tk) = hk (x(tk), tk) + v(tk), k = 1,2,... (2)
where x is the n x 1 state vector; w(t) and v(ty)
are m x 1 and r x ‘1 zero mean independent Gaussian
white noises with the usual hypothesis of w(t) be
ing independent of the past states and v(ty) being
independent pf the state, with covariances:

E[w(t) v(D] = Q) 6(c=1)

E[v(tk)'vT(t.)] SR ICR _ 3)

" vhere 6(t—T) is the Dirac delta functxon and &y

is the.Kronecker symbol. In this problem, the term
f0(x,t) in Equation (1) represents the unknown
part of the dynamical model, which usually cannot
be included in the estimator model because of

lack of knowledge about the system dynamics.

Consider now a typical dlscrotlzatxon interval,
(ty, tyep). In the prediction phase of an
rxtendcz kalman Filter (e.g. Jazwinski, 1970), a
nominal trajectory is generated by:

-
.
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x =G0 5 R(e) =R |e) (%)
where i(tkf:k) is the estimate in tp. Linearizing
the system given in Equation (1) around the nom-
inal trajectory and defining:

ax(t) = x(t) -';(t) s Co (5)

a

one obtains a first order aporoximation of the
propazated error as given by:

Ax(tk") = ¢(t

. ck+.1
+ L ¢(tk+

ARTLRLLICR

[»9)T(s) us) ds. (6)

In Equation (6), ¢(.,.) is the state transition
=atrix associated with the linear system:

bx(t) = £, (x,t) Ax(t) + G(t) wlt), (7)

where the subindex x indicates a partial derivation®

with respect to the state. The propagated error
can be regarded as the a priori information in
tx+1, which is the 1nformat10n based on previously
processed observations:

ax(e, ) =03 ) nGest ). (®)

Since.the nominal trajectory was taken with the
initial value in ty equal-to the estimated value
at that time, then the propasated estimate in
ti+y is necessarily zero. Therefore, if the ap-
proximations of Equations (4) and (6) are as-
sumed, there results:

dx(t, ) = 0+ nlkei]) , )

where n(k+l|k) is zero mean conditioned on the
observations already DfOLeSSEd with covariances
given by

ElnCke 1) n"(ert [l)] 4 Blkst [k) =

1 T ’
CRLRLIC DI CI S

tk 1 = T T .
[ Tae,,8) Ts) Qs) T (s) @ (€, ,4>8)ds. (10)
t

k

In the proposed procedure the state estimation of
the system in EquaLLon (1) is aporoximated by the
estimation of a "virtual control". Defining:

x = f£(x _,t) + G(t) u(e) , (11)
c c .

the control vector u(t) is to be estimated inorder
to force the controlled state Xc to be a good
approximation of the true state x by tracking the
observations given by Equation (2). From an heu-
ristic point of view, the idea is quite simple:
Consider a typical interval (ty, tysqy). Since the
model of the estimator is not a eood apnroxima-
tion to the real system, within the interval tk to
tk+l' the propagated trajectory will deviate rel-
ative to the true one. A control action, based on
the observation residues, is then calculated in
tk+1 to update the estimate of the state vector.
Tuis action changes the initial condition for the
nominal trajectory in ty,{ toapoint closer to the -

true trajectory than the original onc. In some
scnse, this procedure resembles the Extended
+Kalman Filter, but itmust be poiuted out th.t the
virtual control scheme requires a number of esti-
mated control compancnts just equal to the number
of degrees of freedom of the system (control-

lability),.and also requires a tumber of observa-.

tions with enough level of information which
_guarantees the calculation of the control actxun
in tyyy (observability). .

To obtain, in a first approach, the contiol u(t)
in the interval ti to ti4+1, Oone assumes u as a
first order perturbation and takes the' controlled
trajectory as:

X = £GLE) L K (e) =R e (12)

Using the same steps yiven by Equations (5) and
P g q

(6):
bt = £ G ,t) Bx_ +G(¢) u(c>,Ax'_(t,_) =0, (13)

where u(t) is modelled as a step process and calcu
lated to satisfy:

Axc(fk+|) H Ax(tk+1) s (14)
( k+l) = hk+l(§;(ck 1) - Axc(‘tk I)’ tk+l) 5
+ V(tk+l)' . (15)

From Equations (9) and (14) there results:

0 = ax (e, ) + nlksifi). {16)

But from Equation (13) one obtains:

( k+| :
Axc(t )=( Jt ¢ (tk+1’s)c(s)ds-)u(tk) b,
k
y (k+1,k) u(tk) : . (17)

where . (t,t, ) .is the transition matrix asscciated
with EqGation (13). From the linearization of
Equation (15) one gets:

‘ P
byfep i =t o, LRREC R AL LN G

vl . (18)

where high order terms have been disregarded.
FLnall/, combining the results of Equations (16),

(17) and (18), the following problem of parameter
estimation results:

0 = y(k+1,k) u(ck) + n(k+l|k)-, (19)
by(e, ) = Hks1) Y(kn,k)u(ck) evie, ), (20)
H(ke1) 55—-h G (6, ) L) @D

Cc

Using a Gauss-Markov minimum variance estimator
(e.g. Liebelt, 1967 and Maybeck, 1979), estimates
of u(tk) are obtained:

G, =P ket [0y  Ceo ) KT (ket) R (koDyCe, )

(22)
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‘ling between state variables and noises.
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B ket [l) = [vTGes 1,k P70 (et [) v ket k) ¢

'rT(kH.k). HT(kH) R"(kn) H(k+l)y(k+1,k)]-1.
(23)

where R(k+1) and P(k+1|k) are as defined in Equa-
tions (3) and (10).

To recover the estimates of the state, one shall
combine Equations (17) and (22) to get:

Axc(tk¢1) = v(k+1,k) u(tk) (24)
and to take the approximation:
x(ty ., | M) = (e, |tk) ok (t, ) (25)

To recover the covariance matrix of the error in
the estimate, it is only nccessary to consider
Equations (14), (17) and (25) to get:

e(tk+1|tk+1) box(e ) -x(tk+1|tk+1) =% - 3 . (26)
Plert[ket) 4 Efee,, fr, e (tk+1|tk+l)] =
= y(ke1,k) P Gert [l).y Gt k)L (27)

3. CONTROL MATRIX CORRECTION

In the propcsad procedure, the virtual control for
mulation allows to,get some advantages in terms
of the estimator dynamical model strucuture. Gener
ally, when one is faced with the problem of state
estimation of mtchanical systems or other systems
governed by second-order differential equations,
it is usual to have the matrix G in:

x = f(x,t) + G w(t) (28)
=T
G [0

i

n/2 ¢ Tnga) e

where 0,/2 and I,/p are the null and the identity
matrices of order n/2, respectively. This means
that the coefficients in G just make the coup-

In the
virtual control context it is possible to define
the control matrix G in Equation (11) in order to
augnment the coupling between estimated controls
and state variables and three types of corrections
for the control matrix G are proposed.

3.1. DIRECT CORRECTION

The simplest form to define a control matrix with

the characteristic described before is to consider:,

3

G A [Cp In/2 " (30)

Cv In/Z]

where and C,, are positive coefficients, held
fixed during the time propagation (Rios Neto and
Fleury, 1984, -1985). Despite the advantage given
by the simple form, this correction techniques has
the drawbacks of using a trial-and-error méthod

to choose C,, Cy and.of adding the estimated cor-
rections to the scate variables with the same

" sign.

3.2. RESTORATION

The idea of restoration was first 'used in numer-

ical gradient-like methods to solve optimal con-

trol pruolcms. In this case, restoration is used
to modify C, and Cy in Equation (30), thus giving
priority of convergence to either forced (veloc-

ity type) state variables or non forced (position
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type) state variables, depending on the system
behavior, A decision to change Cj and Cy is made
bascd upon a converqgence measure given by esti-
mated errors,ep for nonforced variables and ey
for the forced ones defined by:‘.

oo A
e (K)» = néz P (k/K)| ;
P n72.rr i=1 il o
- y
2

1 1 Y
°v(k) w g [i’inlz i Pii(k/k)J (31)

v

where P;; are elements on the diagonal of P(k/k)

and 1.,T, represent the expected standard devia-
tion of the errors between estimated and true
variables after convergence. Then epy ey % 1 indi-
cates convergence to the true trajectory. The
procedure is initialized with the Diirect Correc-
tion and after each n steps a test is done. By
comparxnp the estimated errors ep and e, with
given values (for example, ep < g arnd ev < 3) the
estimator makes a decision between: i) changing
both coefficients (e, > 2, ey, > 3); or ii)chang-
ing just Cy (e, > 2, < 3); or iii) changing
just Cy (c < 2, e, > J), or iv) maintaining both
coefficients (e <2, ey < 3),

With this technique, coefficients C_ and Cy are
changed during the time interval of interest.
However, the same disadvantages described for the
Direct Correction are still present.

3.3

3.3, AUTOMATIC CORRECTION

In the automatic correction technique,matrix G is gen
erated at each step inside the algorxthm reinforcing™

the adaptive characteristic of the procedure. Deter-

mination of G is done by solving, step by step, a
deterministic linear optimal control problem.This
control problem arises if one considers the esti-
mation procedure as that of a controller that must
drive the system from a given point in ty to sat-
isfy the observations in ty4y, as mentioned be-
fore. Consider, for (ty,tg4+y), the propagation of
the first order perturtation Ax:

Bx(ty ) = $(ke1 k) 5;(tk) + Y@,k ule). (32)

Assuming that the G matrix is constant in this -

.
- interval:

tk+!

v (k+1,k) -.( o (t.
Y 3
Yy

R 7 F
-LL : (k,s) ds]G Q_B
k .

and using Equation (33) in (32):

.s) G(s) ds =

(38)

Ai((ckﬂ') " ¢ (k+1,k) Ax(tk) + B, (34).

1Ok v

Consider now that all terms in the right-hand side

" of Equatloq (34) are known except the G, matrix.

In tgeq, it is expécted that Ax(tg4i) is calcu-

-lated to satisfy the observation residues Ay(Lk*1)

and this corresponds to minimize a quadratlc
criterion given by:

3= lay(e,,) - H NTlay (e, ,,) -

k1’ = Bt A"(tku

Ax(t (35)

- Hea K+1 ).
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subject to the constrnxnt glvcu by Equation (36).
where
T .T

CT-[C : G

P R e LR

: diag (Ré/2+|""gn), ©(36)

There results a lincar system to calculate the non
null clements of the Gk matrix.If r<n(r is the di-
mension of Ay(ty,;))some additional information has
to be provided 1n the criterion to be minimized.

The automatic correction technique has the distin-
puished feature of providing c0Lff1c1ents for Gy
adjusted at each step,-with variable signs and magni
tude. However, an one-step lag has to be imposed to
Ggk,since it was assumed that terms of Equation (34)
were already known.

4. STATE® ERROR FEEDBACK

roach is in some .sense, based on the automat

ion. The idea

s’ to feedback the esti-
we-gtep lag, while the
observation residues are used to estimate the cor-
responding control gains to force the estimated
trajectory towards the real one. In other words,
using the same development given by Equations (11)
through (17), the control vector is now approxi-
mated by

[0
)
9]
r
)

u(ty) = - C(k) Axc(tk) . (37)
where C(.) is a (mxn) control gain matrix to be
estimated in each step.'Substituting u(ty) in Equa
tion (17) there results:

Axc(:k”); vy {k+3 ,k}'u(:k) = - y{k+i ',k)C(k)::n?c(tk)
(38)
where C(k) was taken as
C) = [C, (k) 5 €, ()] = [diaglC,;...C ] 3
: diag [Cn/2+‘,...,C ](k) (39)

To recover the'estimates of the state and of the
covariance matrix of the errors in the estimates,
one has just to follow the steps similar to those
shown in Equations (24) to (27). However, one has
to take into account that linearity of the approx-
imation nas to be maintained in order to avoid
divergence. In consequence, some limit has to be
imposed over the maximum value of the estimated
gains C(tk). This is done substituting C(ty) for:
i=1,...,m (40)

Ei(tk) = a; (k) ci(tk) ,

where aj(k) is calculated by:

RCRACHWEINC: )1- Blxg; (e )| G

where, in (41), B is a positive constant coeffi-
cient to be tunned for each application,

5. APPLICATION

The procedurc was tested under digital simulation
(Burroughs B6800) for the case of real time orbit
determination of a low altitude satellite with:

zero excentricity, 42° inclination, 250km altitude,
A/m = 0.00076 m?/kg, area over mass ratio,
CD = 2.0, drag coefficient.

To simulate the observatlons, a true orbxt was gen
erated by numerical integration, using a dynamic
model including the influence of gravity (up to J¢

zonal and Cyy,Suy tesseral coefficients), atmo-
spheric drag and perturbations of Sun and Moon.
The model adonted for f(x,t),.in Equation (11),
only includéd the ruvxtntxonul effects up- to Jaz,
thus characterlzxng a situation of lack of knowi-
edge quite serious in the dynamics of the system.
It is shown in Kuga (1982) that the application of
the Extended Kalman Filter to the same problem,
without any error compensation technique, causes
divercence of the estimates. Bearing in mind the
aoproximations taken in thé proposed procedure,one

- must expect some difficulties in dealing with this
type of problem. Therefore, error cdmpensatxon
techniques are émployed.

5.1. NOISE ADDITION
Whenever necessary and to overcome the ill-condi-
tioning on theé state error cuvariance matrix due
to the anproximation of Equation (6) for the prop-

agation of the error and due to the nonlinearities

in the observations, both P(k+1|k) and Py(k+1]k) "
are adapted with the help of an Adaptive State
Noise Estimation technique (Rios Netc and-Kuga,
1981,1982,1985).This technique is the ceneraliza-
tion of a procedure by Jazwinski (1969) and con-
sists of adding noise to the system through the
state noise covariance matrix Q.

In the results that follow it is shown that for
the Restoration and Automatic Ccrrection cases it
is possible to use constant levels of state noise;

. in these cases the technique'was only used off
line, in the calibration phase, to tune the filters
with these constant levels of noise.

5.2. . OBSERVATIONS

In the test problemof orbit estimationof a low al
titude satellite,observations were generated com-~
bining the true orbit data with the location of 3
fictitious symmetric topocentric tracking stations
to get, at each 1 second, range and range-rate da-
ta, contaminated by white Gaussian noise with.stan
dard deviations:
b = j0.0m;. gy = 0,1 m/s. e

5.3. RESULTS

Results for a test case where critical initial
conditions are taken for the proposed estimator
are shown in this section, The virtual control u(t)
in Equation (11) is a 3x 1 vector since it is pos
‘sible to "control an orbit" using three indepen~
dent forces, one for each axis. Parameters for a-
nalysis are true and estimated pesiticn errors,
true and estimated velocity errors, given by:

: 3 , " ] 5& "
Ar(k) = (151 [xi(x) - xi(k)] } k=1,2,... (42)

=1,2,,.. (43)

=

1
~ /,
pEG0 = (2 B, () 2

=~

= 1,2,,,. (44)

s 1
Av(k) = (r24 tx; (k) - :ii(k)ll)/2

850k) = (.3, P (klk))l"2 ko= 1,2 (45)
i=4 Cii e

The estimator is initialized with errors of 1000 mw

it position and 10 m/s in velocity for each .compo- '

nent. The results obtained with the Direct Correc-
tion technique are shown. in Figures 1 and 2,Coef~
ficients Cp and Cy were chosen equal to 5.0 and
2.0, respectively, Adaptive State Noise Estimation
(ASNE) was employed in this case. Figures 3 and 4
show the results obtained with the Restoration
Criterionwith constant level noise (CLN)addition,
Cocfficients Qpand C, were chosen in pairs one a-
mong the following: (6.,0; 1,0) for poor position
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convergence; (3.0;1.0) for convereence in position
and vclocity, and (0.1;2.0) for poor velocity con-
verrence (see Section 3.2):

100 ~——F————F—————7—T— T
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Fxgures 5 and 6 present ‘the rcsults accomplished
with the proposed procedure aided by the automatit

Correction and the Adaptive State Noise Estimation
technique. Figures 7 and 8 show the results obtai-
"ned with the use of the Automatic Correction with
constant level noise addition.

The results obtained using State Error Feedback'
and constant level noise addition -in the test
problems were very similar to those obfained with the
Direct C iterion ngdarvnot shown.Coefficient B was

chosen erqqual to 107 . Ditect correctionwas also used
to augment Loupllng between the state variables

with Cp and Cv equal to 3.0 and 1.0,respectively.
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The~analy51s of Figures | to 8 shows that good .
results are accomplished with the use of the Auto-
matic Correction and satisfactory convergence is

-obtained with the other techniques. In these last

case$s the eStimated. errors in the transient phase
of convergence. are optimistic when compared to the

‘real ones, characterizing the difficulty in intro-

cing adequate noise levels, The time interval for
convergence in this transient phase is quite long,
and a comparison shows that convergence for posi-
tions is better in the case of the Restoration
procedure. These characteristics determine that
other improvements must-.be done in the techniques
in order to reach a better performance. On the
other hand, results obtained with the Automatic
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Satellites at Low Altitude). In: Sixth
Brazilian Conpress of Mcchanical Engineering,
Rio de Janeiro. Proccedings. ABCM, v.B., p.
. 405-414, :

RIOS NETO, A.; KUGA, H.K. (1985). $almnn-?i1ter-
ing State Noise Adaptive Estimation.
Presented at the 2nd, IASTED International
Conference in Telecommunication and Control,
Rio de Janeiro. '’

Correction scheme, both with the.Adaptive Staté
.Noige Estimation technique and with ‘the Constant
lLevel Noise Addition, are comparable to results
presented by other techniques usually employed in
.nonlinear system estimation, such as the Fxtended
Kalman Filter aided by Dynamic Model Compensation
(e.p. Kuga, 1982). In this case, a much faster
convergence is obtained at the cost of an incre-
ment of around 207 in computer processing time,
when compared to the other techniques.

nation in the Presence of Unmodelled
Accelerations. IEEE Transactions Automatic
Control, AC-18(4):369-373.

A new approach to state estimation of nonlinear : 3 .
systems has been presented, where the duality ’ *
.between control and estimation was explored to. . : -

transform the estimation problem into one of deter
mining a virtual control. As indicated by the -
results obtained in this exploratory phase, it is
expected to be a valid alternative for the case
where a great lack of knowledge in the dynanic
exists, but a good level of information is

locally provided by the observations.

6. CONCLUSIONS

Un to thic point, one nnly started ro exnlore the
possibilities opened by the virtual nature of
control in Equation (11). Presently, efforts are
being done to further explore these possibilities
in order to improve the different estimator

versions performance.
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